Monday, March 25, 2024

Globular Cluster NGC 1651 in The Large Magellanic Cloud | Hubble

Globular Cluster NGC 1651 in The Large Magellanic Cloud | Hubble


This image shows a globular cluster known as NGC 1651. It is located about 162,000 light-years away in the largest and brightest of the Milky Way’s satellite galaxies, the Large Magellanic Cloud (LMC). A notable feature of this image is that the globular cluster almost fills the entire image, even though globular clusters are only about 10 to 300 light-years in diameter (NGC 1651 has a diameter of roughly 120 light-years). 

A common misconception is that Hubble and other large telescopes manage to observe wildly differently sized celestial objects by zooming in on them, as one would with a specialized camera here on Earth. However, while small telescopes might have the option to zoom in and out to a certain extent, large telescopes do not. Each telescope’s instrument has a fixed ‘field of view’ (the size of the region of sky that it can observe in a single observation). For example, the ultraviolet/visible light channel of Hubble’s Wide Field Camera 3 (WFC3), the channel and instrument that were used to collect the data used in this image, has a field of view roughly one twelfth the diameter of the Moon as seen from Earth. Whenever WFC3 makes an observation, that is the size of the region of sky that it can observe.

The reason that Hubble can observe objects of such wildly different sizes is two-fold. First, the distance to an object will determine how big it appears to be from Earth, so entire galaxies that are relatively far away might take up the same amount of space in the sky as a globular cluster like NGC 1651 that is relatively close by. In fact, there is a distant spiral galaxy lurking in this image, directly left of the cluster—though undoubtedly much larger than this star cluster, it appears small enough here to blend in with foreground stars! Second, multiple images spanning different parts of the sky can be mosaiced together to create single images of objects that are too big for Hubble’s field of view. This is a very complex task and is not typically done for most images, but it has been done for Hubble’s most iconic ones.

Image Description: A spherical collection of stars fills the whole view. The stars merge into a bright, bluish core in the center, and form a sparse band around that out to the edges of the image. A few stars lie in front of the cluster, with visible diffraction spikes. The background is dark black.


Credit: ESA/Hubble & NASA, L. Girardi, F. Niederhofer

Release Date: March 25, 2024


#NASA #Hubble #Astronomy #Space #Science #Stars #StarClusters #NGC1651 #Mensa #Constellation #LMC #Galaxy #Cosmos #Universe #HST #SpaceTelescope #ESA #Europe #GSFC #STScI #UnitedStates #STEM #Education

No comments:

Post a Comment