Sunday, June 30, 2024

See Jupiter’s Moons Form a Triangle | BBC Star Diary: July 1-7, 2024

See Jupiter’s Moons Form a Triangle | BBC Star Diary: July 1-7, 2024

This week, Jupiter’s moons will arrange themselves into a triangle to the left of the gas giant. Find out how you can see it and other celestial sights in this week’s stargazing guide podcast, Star Diary from the makers of BBC Sky at Night Magazine, July 1-7, 2024.

How to see the International Space Station tonight: https://www.skyatnightmagazine.com/advice/skills/how-see-international-space-station-iss-night-sky


Video Credit:  BBC Sky at Night Magazine

Duration: 23 minutes

Release Date: June 30, 2024

#NASA #Space #Astronomy #Science #Planets #Earth #Moon #Jupiter #Moons #SolarSystem #Comets #Stars #Constellations #MilkyWayGalaxy #Galaxies #Universe #Skywatching #BBC #UK #Britain #Europe #UnitedStates #Canada #NorthernHemisphere #STEM #Education #Podcast #HD #Video

Tonight's Sky: July 2024 (Northern Hemisphere)

Tonight's Sky: July 2024 (Northern Hemisphere)


In July 2024, find the Scorpius constellation to identify the reddish supergiant Antares, which will lead you to discover a trio of globular star clusters. Keep watching for space-based views of these densely packed, spherical collections of ancient stars, as well as three nebulas: the Swan Nebula, the Lagoon Nebula, and the Trifid Nebula.

About this Series

“Tonight’s Sky” is a monthly video of constellations you can observe in the night sky. The series is produced by the Space Telescope Science Institute, home of science operations for the Hubble Space Telescope, in partnership with NASA’s Universe of Learning.

Video Credit: Space Telescope Science Institute (STScI)

Release Date: June 25, 2024


#NASA #Space #Astronomy #Science #Earth #Planets #SolarSystem #Stars #Antares #Nebulae #SwanNebula #LagoonNebula #TrifidNebula #Constellations #MilkyWayGalaxy #Galaxies #Skywatching #STScI #JPL #Caltech #SSU #UnitedStates #Canada #Mexico #NorthernHemisphere #STEM #Education #HD #Video

Nebulae NGC 1999 & L1641N in Orion: Star Birth Jets | WIYN Observatory

Nebulae NGC 1999 & L1641N in Orion: Star Birth Jets | WIYN Observatory


Astronomers captured this spectacular panorama of star formation with the National Science Foundation's 0.9-meter telescope on Kitt Peak. Located in the constellation of Orion (the Hunter), the area in this image is located about two degrees south of the Orion Nebula, where a surviving portion of one of Orion's giant molecular clouds (known as "Orion A") is continuing to spawn new stars. Powerful jets of outflowing gas are often the first visible signs of the birth of young stars. These jets punch holes through the opaque clouds where the star is formed. Through such holes the light of the new-born stars can escape to produce what are known as reflection nebulae. Several such nebulae are seen in this image. The bright object below and to the left of center is the reflection nebula NGC 1999, which contains the young star V380 Orionis. A small, triangle shaped patch of dusty material is seen in silhouette against the reflection nebula. NGC 1999 lies at the center of a network of nebulous filaments that billow out and away like the spokes of a bicycle wheel. These features may trace a wide-angle wind emerging from NGC 1999. 

Near the upper half of the image, bright young stars in a forming cluster named L1641N light up another reflection nebula. It contains several dense clumps of opaque material. Infrared images have identified over 50 forming stars in this region. More than six jets and outflows are erupting from this region. Outflowing jets from young stars also power luminous shock waves known as Herbig-Haro (HH) objects. They can move through the surrounding gas at speeds of up to hundreds of kilometers per second (over 100,000 miles an hour). As these shock waves ram their surroundings, they heat up bow-shaped nebulae of glowing plasma. This image shows dozens of such objects. 

The region below the NGC1999 reflection nebula contains a cluster of deeply embedded young stars that power oppositely directed bow shocks. These objects were first recognized by Guillermo Haro and George Herbig around 1950 and today they are known as HH 1 and HH 2. Recent observations indicate that the cone shape located near the right edge of the image (known as HH 401) may be a giant bow shock powered by the source of the HH 1 & 2 outflow. If so, this outflow is more than 10 light-years long! The arc of light looking like a waterfall (located above and to the left of HH 401) is the enigmatic object HH 222. Unlike most other HH objects, it is a source of polarized, non-thermal radio waves. The nature of this feature remains largely unknown. 

Between HH 401 and HH 222 runs a long chain of Herbig-Haro objects associated with the object HH 34. HH 34 itself is the bright and compact bow shock located near the bottom of HH 222. Just above HH 34, a compact jet can be seen to emerge from the source star. This jet and its first bow shock (HH 34) mark the inner portion of a chain of shocks that trace a graceful S-shaped curve from the upper right hand corner of the image down towards HH 1 & 2. The north end of the flow is just below the top of the image (objects HH 33 & 40); the south end of the flow terminates in a group of small bow shocks known as HH 86 & 87. They reside in the dark region between HH 401 and NGC 1999. Many other smaller nebulous patches in this image mark small reflection nebulae, Herbig-Haro objects, and stellar jets. The rich detail in this image reveals one of the most fascinating areas of the night sky.

The Kitt Peak National Observatory is located on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O'odham Nation. With over twenty optical and two radio telescopes, it is one of the largest gatherings of astronomical instruments in the northern hemisphere.

The Wisconsin-Indiana-Yale-NOIRLab (WIYN) Observatory is situated atop Kitt Peak National Observatory, a partnership consisting of University of California Irvine, Purdue University, the National Science Foundation’s NOIRLab, and NASA.

Learn more about the WIYN Observatory:

Credit: T.A.Rector, B.Wolpa and G.Jacoby (NOIRLab/NSF/AURA) and Hubble Heritage Team (STScI/AURA/NASA)

Release Date: June 30, 2020


#NASA #Astronomy #Space #Science #Stars #Nebulae #NGC1999 #L1641N #ReflectionNebulae #StellarNurseries #Jets #HerbigHaroObjects #Orion #Constellation #Cosmos #Universe #WIYNObservatory #KPNO #KittPeak #Arizona #NOIRLab #AURA #NSF #UnitedStates #STEM #Education

Saturn's Rings | NASA Cassini Mission

Saturn's Rings | NASA Cassini Mission


NASA's Cassini spacecraft captured extraordinary ring-moon interactions, observed the lowest ring-temperature ever recorded at Saturn, discovered that the moon Enceladus is the source for Saturn’s E ring, and viewed the rings at equinox when sunlight strikes the rings edge-on, revealing never-before-seen ring features and details.

The Cassini spacecraft arrived in the Saturn system in 2004 and ended its mission in 2017 by deliberately plunging into Saturn's atmosphere. This method was chosen because it is necessary to ensure protection and prevent biological contamination to any of the moons of Saturn thought to offer potential habitability. 

The Cassini-Huygens mission was a cooperative project of NASA, European Space Agency (ESA) and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the mission for NASA's Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter. The Cassini radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.

Cassini Mission information:

https://solarsystem.nasa.gov/cassini


Image Credit: NASA/JPL-Caltech/SSI/CICLOPS

Processing: Kevin M. Gill

Image Date: Dec. 17, 2006

Release Date: June 29, 2024


#NASA #Astronomy #Space #Science #Planet #Saturn #Rings #SolarSystem #CassiniMission #CassiniSpacecraft  #HuygensProbe #JPL #Caltech #UnitedStates #ESA #Italy #Italia #ASI #Europe #STEM #Education

Planet Saturn & Titan Moon | NASA Cassini Mission

Planet Saturn & Titan Moon | NASA Cassini Mission

NASA's Cassini spacecraft arrived in the Saturn system in 2004 and ended its mission in 2017 by deliberately plunging into Saturn's atmosphere. This method was chosen because it is necessary to ensure protection and prevent biological contamination to any of the moons of Saturn thought to offer potential habitability. The Cassini Mission mapped more than 620,000 square miles (1.6 million square kilometers) of liquid lakes and seas on the surface of Saturn's largest moon Titan. This work was performed with its radar instrument that sent out radio waves and collected a return signal (or echo) that provided information about the terrain and the liquid bodies' depth and composition, along with two imaging systems that could penetrate the moon's thick atmospheric haze.

Titan is larger than the planet Mercury and is the second largest moon in our solar system. Titan is the only moon known to have a dense atmosphere, and the only object in space, other than Earth, where clear evidence of stable bodies of surface liquid has been found. Titan’s subsurface water could be a place to harbor life as we know it, while its surface lakes and seas of liquid hydrocarbons could conceivably harbor life that uses different chemistry than we are used to—that is, life as we do not yet know it. 

The Cassini-Huygens mission was a cooperative project of NASA, European Space Agency (ESA) and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the mission for NASA's Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.

Cassini Mission information:

Image Credit: NASA/JPL-Caltech/SSI/CICLOPS
Processing: Kevin M. Gill
Image Date: August 11, 2013
Release Date: June 29, 2024

#NASA #Astronomy #Space #Science #Planet #Saturn #Moon #Titan #Lakes #Hydrocarbons #Astrobiology #SolarSystem #CassiniMission #CassiniSpacecraft  #HuygensProbe #JPL #Caltech #UnitedStates #ESA #Italy #Italia #ASI #Europe #STEM #Education

NASA Planetary Defense: Near-Earth Asteroids Discovered to Date for June 2024

NASA Planetary Defense: Near-Earth Asteroids Discovered to Date for June 2024

What do we know about the asteroids and comets in Earth's neighborhood? Planetary defense includes finding, tracking, and characterizing these near-Earth objects. It is part of NASA's mission. Here is what we have found so far . . .

Learn more about Planetary Defense at NASA: https://www.nasa.gov/planetarydefense


Video Credit: NASA 360

Duration: 1 minute, 13 seconds

Release Date: June 30, 2024


#NASA #Space #Earth #Planet #PlanetaryDefense #June2024 #Asteroids #AsteroidBelt #Comets #NEO #NEA #SolarSystem #Science #Technology #DARTMission #JHUAPL #JPL #Caltech #UnitedStates #STEM #Education #HD #Video

Saturday, June 29, 2024

Comet 13P/Olbers Returns to Inner Solar System: Last Seen in Year 1956

Comet 13P/Olbers Returns to Inner Solar System: Last Seen in Year 1956

  

Comet 13P/Olbers is returning to the inner Solar System after 68 years. This periodic, Halley-type comet will reach its next perihelion or closest approach to the Sun on June 30, 2024. It can be viewed with binoculars in the night sky of planet Earth's northern hemisphere. 

This sharp telescopic image of 13P is composed of stacked exposures made on the night of June 25. It easily reveals shifting details in the bright comet's torn and tattered ion tail buffeted by the wind from an active Sun, along with a broad, fanned-out dust tail and slightly greenish coma. The frame spans over two degrees across a background of faint stars toward the constellation Lynx.

13P/Olbers fits the classical definition of a Halley-type comet with a period between 20 and 200 years. This comet was last seen in 1956. German astronomer Heinrich Wilhelm Matthias Olbers discovered this comet on March 6, 1815.


Image Credit & Copyright: Dan Bartlett

Dan's website: https://www.astrobin.com/users/h2ologg/

Release Date: June 28, 2024


#NASA #Space #Astronomy #Science #Sun #Earth #Comets #Comet13POlbers #SolarSystem #Lynx #Constellation #Astrophotography #DanBartlett #Astrophotographer #CitizenScience #UnitedStates #STEM #Education #History #APoD

Stargazing with SpaceX Dragon | International Space Station

Stargazing with SpaceX Dragon | International Space Station

NASA Astronaut Matthew Dominick: "Peering out into the cosmos from Dragon perched on top of the ISS . . . Today on each orbit the sun sets about 15 minutes before the moon rises. Shot is taken just as the moon comes up illuminating the Dragon with a faint blue in front of a sea of stars."

Technical details: 1s, f1.4, ISO 5000, 28mm

Expedition 71 Updates: 

https://blogs.nasa.gov/spacestation/

Expedition 71 Crew
Station Commander: Oleg Kononenko (Russia)
Roscosmos (Russia): Nikolai Chub, Alexander Grebenkin (Russia)
NASA: Tracy Dyson, Matthew Dominick, Mike Barrett, Jeanette Epps
NASA’s Boeing Crew Flight Test astronauts Suni Williams and Butch Wilmore

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation

Science, Technology, Engineering, Math (STEM)


Image Credit: NASA's Johnson Space Center (JSC)/Astronaut Matthew Dominick

Release Date: June 29, 2024


#NASA #Space #Astronomy #Science #Stars #MilkyWayGalaxy #Earth #ISS #SpaceXDragon #SpaceTechnology #SpaceLaboratory #Engineering #Astronauts #UnitedStates #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition71 #STEM #Education

Galaxy Messier 87: Wide-field View in The Virgo Cluster | Schmidt Telescope

Galaxy Messier 87: Wide-field View in The Virgo Cluster Schmidt Telescope

Image of the Virgo cluster of galaxies taken with the Palomar Observatory 48-inch Schmidt Telescope as part of the Digitized Sky Survey 2 (DSS2). The giant elliptical galaxy Messier 87 is seen in the center, while Messier 84 and 86 are the two bright galaxies forming part of the small group on the center right of the image. New observations obtained with European Southern Observatory’s Very Large Telescope (VLT) have shown that the halo of stars around Messier 87 has been truncated, possibly because of interaction with Messier 84. The observations also reveal that Messier 87 and 86 are moving towards each other.

The Digitized Sky Survey (DSS) is a digitized version of several photographic astronomical surveys of the night sky, produced by the Space Telescope Science Institute between 1983 and 2006.

Learn more about the Schmidt Telescope:

https://sites.astro.caltech.edu/palomar/about/telescopes/oschin.html


Credit: ESO/Digitized Sky Survey 2

Release Date: May 20, 2009


#NASA #Astronomy #Space #Science #Galaxies #Galaxy #M87 #Messier87 #EllipticalGalaxy #VirgoCluster #GalaxyClusters #Virgo #Constellation #Cosmos #Universe #SchmidtTelescope #PalomarObservatory #SanDiego #California #DSS2 #STScI #ESO #Europe #NOIRLab #AURA #NSF #UnitedStates #STEM #Education

The Halo of Galaxy Messier 87 in Virgo | Burrell Schmidt Telescope

The Halo of Galaxy Messier 87 in Virgo | Burrell Schmidt Telescope


The huge halo around giant elliptical galaxy Messier 87 appears on this very deep image. An excess of light in the top-right part of this halo, and the motion of planetary nebulae in the galaxy, are the last remaining signs of a medium-sized galaxy that recently collided with Messier 87. The image also reveals many other galaxies forming the Virgo Cluster, of which Messier 87 is the largest member. In particular, the two galaxies at the top right of the frame are nicknamed "the Eyes".

Note: The black circles visible are coverage gaps where we lacked image data.

The Case Western Reserve University’s Burrell Schmidt Telescope wide-field telescope, owned and operated by Case Astronomy, is located at Kitt Peak National Observatory. It is used for deep wide-field imaging and surveys and was installed on Kitt Peak in 1979.

Learn more about the Burrell Schmidt Telescope:

https://noirlab.edu/public/programs/kitt-peak-national-observatory/burrell-schmidt-telescope/


Credit: KPNO/NOIRLab/NSF/AURA/Chris Mihos (Case Western Reserve University)/ESO

Release Date: May 2, 2023


#NASA #Astronomy #Space #Science #Galaxies #Galaxy #M87 #Messier87 #EllipticalGalaxy #Virgo #Constellation #Cosmos #Universe #BurrellSchmidtTelescope #Optical #KPNO #NOIRLab #AURA #NSF #KittPeak #Arizona #UnitedStates #ESO #Europe #STEM #Education

The Whale Galaxy: NGC 4631 in Canes Venatici | Hubble

The Whale Galaxy: NGC 4631 in Canes Venatici | Hubble


The NASA/European Space Agency Hubble Space Telescope has peered deep into NGC 4631, better known as the Whale Galaxy. Here, a profusion of starbirth lights up the galactic center, revealing bands of dark material between us and the starburst. The galaxy’s activity tapers off  in its outer regions where there are fewer stars and less dust, but these are still punctuated by pockets of star formation.

The Whale Galaxy is about 30 million light-years away from us in the constellation of Canes Venatici (The Hunting Dogs) and is a spiral galaxy much like the Milky Way. From our vantage point, however, we see the Whale Galaxy edge-on, seeing its glowing center through dusty spiral arms. The galaxy's central bulge and asymmetric tapering disc have suggested the shape of a whale or a herring to past observers.

Many supernovae—the explosions of hot, blue, short-lived stars at least eight times the mass of the Sun—have gone off in the core of the Whale Galaxy. The stellar pyrotechnics have bathed the galaxy in hot gas, visible to X-ray telescopes like the European Space Agency’s XMM–Newton. Comparing the optical and near-infrared observations from Hubble with other telescopes sensitive to different wavelengths of light helps astronomers gather the full story behind celestial phenomena.

From such work, the triggers of the starburst in the Whale Galaxy and others can be elucidated. The gravitational "feeding" on intergalactic material, as well as clumping caused by the gravitational interactions with its galactic neighbors, creates the areas of greater density where stars start to coalesce. Just as blue whales, the biggest creatures on Earth, can gorge themselves on comparatively tiny bits of plankton, so the Whale Galaxy has become filled with the gas and dust that powers a high rate of star formation.


Credit: NASA & ESA

Release Date: Nov. 14, 2011


#NASA #ESA #Astronomy #Space #Science #Hubble #Galaxies #Galaxy #NGC4631 #SpiralGalaxy #CanesVenatici #Constellation #Cosmos #Universe #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education

Friday, June 28, 2024

Thackeray's Globules: Nebula IC 2944 in Centaurus | Victor Blanco Telescope

Thackeray's Globules: Nebula IC 2944 in Centaurus | Victor Blanco Telescope

This image was obtained with the wide-field view of the Mosaic II camera on the 4-meter Victor Blanco telescope at Cerro Tololo Interamerican Observatory. An array of dark Bok globules, known as Thackeray's Globules, can be seen in silhouette against the emission nebula IC 2944 in the constellation Centaurus. These dense, opaque dust clouds are silhouetted against nearby bright stars in the busy star-forming region. The image was generated with observations in the B (blue), I (orange) and Hydrogen-Alpha (yellow) filters. In this image, north is to the right, and east is up. This is one of the last observations completed with the Mosaic II camera before it was decommissioned.

Distance: ~6,500 light years

Astronomer A.D. Thackeray first spied the globules in IC 2944 in 1950. Globules like these have been known since Dutch-American astronomer Bart Bok first drew attention to such objects in 1947.

However, astronomers still know very little about their origin and nature, except that they are generally associated with areas of star formation, called 'HII regions' due to the presence of hydrogen gas. IC 2944 is filled with gas and dust that is illuminated and heated by a loose cluster of massive stars. These stars are much hotter and much more massive than our Sun.

These thick clouds of dust, known as the Thackeray globules, are silhouetted against the glowing gas of the nebula. These globules are under fierce bombardment from the ultraviolet radiation from nearby hot young stars. They are being eroded away and also fragmenting, rather like lumps of butter dropped onto a hot frying pan. It is likely that Thackeray’s globules will be destroyed before they can collapse and form new stars. 

The 4-meter Víctor M. Blanco Telescope was commissioned in 1974. It is a near twin of the Mayall 4-meter telescope on Kitt Peak. In 1995 it was dedicated and named in honor of Puerto Rican astronomer Víctor Manuel Blanco. It is also part of the Dark Energy Survey (DES), a visible and near-infrared survey that aims to probe the dynamics of the expansion of the Universe.

Víctor M. Blanco Telescope:

https://noirlab.edu/science/programs/ctio/telescopes/victor-blanco-4m-telescope


Credit: T.A. Rector (University of Alaska Anchorage) and N.S. van der Bliek (NOIRLab/NSF/AURA)

Release Date: June 26, 2012


#NASA #Astronomy #Space #Science #Nebulae #Nebula #EmissionNebula #IC2944 #RunningChickenNebula #BokGlobules #ThackeraysGlobules #Centaurus #Constellation #MilkyWayGalaxy #Cosmos #Universe #VictorBlancoTelescope #KPNO #NOIRLab #NSF #AURA #KittPeak #Arizona #UnitedStates #Europe #STEM #Education

Earth: In the Grip of Global Heat | NASA’s Goddard Institute for Space Studies

Earth: In the Grip of Global Heat NASA’s Goddard Institute for Space Studies

This animation shows the daily maximum surface air temperature across Northern Africa, the Middle East, and South Asia from June 15 to June 25, 2024.

It is only the beginning of the summer season in the Northern Hemisphere, but Earth is already roasting. Scientists from NASA’s Goddard Institute for Space Studies (GISS) recently reported that May 2024, the hottest May in NASA’s global surface temperature analysis, marked a full year of record-high monthly temperatures. Likewise, the National Oceanic and Atmospheric Administration (NOAA) recently reported that January through May 2024 ranked warmest on its 175-year temperature record. On June 19, 2024, the Northern Hemisphere was running 1.1 degrees Celsius (1.9 degrees Fahrenheit) above normal, according to an analysis of meteorological data from Climate Reanalyzer.

Climate Report Links:

GISS Report: https://www.nasa.gov/earth/nasa-analysis-confirms-a-year-of-monthly-temperature-records/

NOAA Report https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202405/supplemental/page-1

Climate Reanalyzer:

https://climatereanalyzer.org/clim/t2_daily

In this context, early summer heatwaves in the Northern Hemisphere have been fierce. Just as Central America and the southwestern and eastern United States saw blasts of heat in May and June, temperatures also soared in the Middle East, South Asia, and Africa. The series of heat waves has contributed to large numbers of deaths, strained power grids, and challenged meteorological records.

This animation shows the daily maximum surface air temperature across Northern Africa, the Middle East, and South Asia from June 15 to June 25, 2024. It was produced by combining satellite observations with temperatures predicted by a version of the Goddard Earth Observing System (GEOS) global model. It uses mathematical equations to represent physical processes in the atmosphere. The darkest red areas indicate temperatures of more than 40°C (104°F).

According to news reports, nighttime temperatures were as high as 35.2°C (95.4°F) in Delhi on June 18, one of the hottest nights the city has seen in decades. In Greece, temperatures soared to 44.5°C (112.1°F) amid the closure of schools and historical sites. The Saudi National Center for Meteorology reported temperatures up to 49°C (120°F) in and around Mecca during Hajj.

In many cities, extreme temperatures collided with limited access to air conditioning, large outdoor events, high nighttime temperatures, a lack of green space, urban heat islands, and other factors to leave millions of people in hot and often humid conditions. The circumstances triggered not just discomfort but heat exhaustion and heatstroke in places. The annual Hajj pilgrimage to Mecca in Saudi Arabia proved particularly deadly in mid-June, but news reports indicate that the heat was associated with hospitalizations and deaths in India, Pakistan, Egypt, and Greece as well.

According to the World Health Organization (WHO), heat stress is the world’s leading cause of weather-related deaths and can exacerbate underlying illnesses including cardiovascular disease, diabetes, mental health conditions, and asthma. Researchers have calculated that roughly 489,000 heat-related deaths occur each year, with 45 percent of the deaths in Asia and 36 percent in Europe.

“For older adults with physical health problems, temperatures as low as 26.7°C (80°F) can pose significant danger. And when humidity is as high as 90 percent, even 25.6°C (78°F) can be hazardous,” said Deborah Carr, a Boston University sociologist who specializes in the study of aging. “Nighttime heat is especially harmful for older adults whose homes lack air conditioning or who can’t afford to run their air conditioners for long periods.”

Carr is part of a research team that used temperature and climate data archived by NASA and demographic data to identify parts of the world at the greatest risk of current and future heat exposure. They published their results with the Nature Communications journal in May 2024. They found that, in 2020, about 14 percent of the world’s population 69 years of age or older resided in areas where the average maximum temperature exceeded 37.5°C (99.5°F)—the level at which even brief exposure can be dangerous for older adults. The researchers projected that by 2050, more than 23 percent of that age group will face maximum temperatures that exceed 37.5°C—an increase of around 200 million older adults.

To prepare, Giacomo Falchetta, one of the authors of the study and a researcher at the Euro-Mediterranean Center on Climate Change, recommended a number of tailored public approaches. Well-resourced cities might increase investments in early warning systems and ride services to cooling centers and hospitals. By using remote sensing and geographic information systems, public officials could identify neighborhoods with high levels of heat exposure, and expand power grids to manage the increasing demand for air conditioning, he said. In contrast, improving access to high-quality housing, air conditioning, and clean water could have the greatest impact in cities with fewer resources, he added.

There are steps individuals can take to minimize risks as well. “The number one thing that older adults need to recognize is that they’re not the same person they were 50 years ago,” said Carr. “Biological changes mean that we can’t tolerate heat as well in our older years. Stay indoors during heat waves. If you have to go outside, get your activities done in the early morning or evening, when temperatures cool down. Drink plenty of water. Don’t use the oven, especially in small homes. Be sensitive to symptoms like dizziness and call for medical attention.”

Goddard Institute for Space Studies

https://www.giss.nasa.gov


Image Credit: NASA Earth Observatory video by Lauren Dauphin, using GEOS data from the Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center (GSFC)

Story Credit: Adam Voiland

Release Date: June 28, 2024


#NASA #Space #Satellites #Science #Planet #Earth #June2024 #GlobalTemperatureRecords #Weather #Meteorology #Model #ClimateChange #GlobalHeating #Climate #Environment #InSituMeasurements #GlobalTemperatureMap #GreenhouseGases #GHG #EarthObservation #RemoteSensing #NASAGISS #GISS #GSFC #UnitedStates #STEM #Education #HD #Video

Northern Lights over Shallow Lake, Ontario, Canada

Northern Lights over Shallow Lake, Ontario, Canada





On Earth, auroras are mainly created by particles originally emitted by the Sun in the form of solar wind. When this stream of electrically charged particles gets close to our planet, it interacts with the magnetic field, which acts as a gigantic shield. While it protects Earth’s environment from solar wind particles, it can also trap a small fraction of them. Particles trapped within the magnetosphere—the region of space surrounding Earth in which charged particles are affected by its magnetic field—can be energized and then follow the magnetic field lines down to the magnetic poles. There, they interact with oxygen and nitrogen atoms in the upper layers of the atmosphere, creating the flickering, colorful lights visible in the polar regions here on Earth.

Earth auroras have different names depending on the pole they occur at. Aurora Borealis, or the northern lights, is the name given to auroras around the north pole and Aurora Australis, or the southern lights, is the name given for auroras around the south pole.

The Colors of the Aurora (U.S. National Park Service)

Image Credit: Northern Lights Graffiti
Image Date: June 28, 2024 ~12:11am

#NASA #Astronomy #Space #Science #Planet #Earth #Aurora #AuroraBorealis #NorthernLights #MagneticField #Magnetosphere #SolarWind #Sun #Star #Astrophotography #NorthernLightsGraffiti #Astrophotographer #ShallowLake #Ontario #Canada #NorthAmerica #STEM #Education

China's Plan to Establish a Permanent Moon Research Station | Dongfang Hour

China's Plan to Establish a Permanent Moon Research Station | Dongfang Hour

"While the US and its partners are planning to carry out the Artemis Program in the coming decade, China is preparing to construct the International Lunar Research Station (ILRS). In this episode, we do a deep dive into China's permanent lunar station project and its scientific and global ramifications."

00:00 Artemis and the ILRS (Introduction)

00:43 China's Moon Program: Early Beginnings

01:58 Chang'e 1 to Chang'e 6

02:35 First Mention of the ILRS

05:14 The ILRS Becomes a Sino-Russian Project

06:02 ILRS Phase 1 - Moon Station "Basic Model"

06:57 ILRS Phase 2 - Moon Station "Construction Phase"

10:09 How China plans to launch the ILRS hardware

11:20 Can the ILRS become international?


Learn more about China's ILRS plans:

https://www.unoosa.org/documents/pdf/copuos/2023/TPs/ILRS_presentation20230529_.pdf

https://english.www.gov.cn/news/202404/25/content_WS662a42bdc6d0868f4e8e66f0.html


Video Credit: Dongfang Hour

Duration: 16 minutes

Release Date: June 28, 2024

#NASA #CNSA #ESA #Space #Astronomy #Science #China #中国 #Moon #MoonStation #ILRS #LunarResearchStation #SouthPole #SpaceTechnology #SpaceExploration #SolarSystem #HumanSpaceflight #InternationalCooperation #STEM #Education #HD #Video

China's Chang'e-6 Retrieves over 1,935 Grams of Samples from Moon's Far Side

China's Chang'e-6 Retrieves over 1,935 Grams of Samples from Moon's Far Side

China's historic Chang'e-6 mission collected a total of 1,935.3 grams of samples from the far side of the Moon, the China National Space Administration (CNSA) announced on Friday, June 28, 2024, as the valuable samples were handed over to the Chinese Academy of Sciences at a special ceremony held in Beijing.

China's historic Chang'e-6 probe has retrieved a total 1,935.3 grams of samples from the far side of the Moon, the China National Space Administration announced on Friday, as the valuable samples were handed over to the Chinese Academy of Sciences at a special ceremony held in Beijing.

The Chang'e-6 probe's returner touched down in north China's Inner Mongolia Autonomous Region on Tuesday, June 25, completing its momentous 53-day mission to the lunar far side and marking another milestone in China's space exploration program.

The international space science community has also hailed the historical significance of the accomplishment, and believe the samples can offer global scientists the chance to uncover hidden secrets from the Moon's mysterious far side.

After the samples were brought back to Beijing earlier this week and officially handed over to scientists, the Chang'e-6 mission has now transitioned from the engineering implementation stage to a new phase of scientific research. Following the safe transportation of the precious samples to the lunar sample lab, researchers will carry out storage and processing tasks as planned and later initiate scientific research work.

An initial visual inspection of the contents of the sealed container has already provided interesting indications that the mineral and chemical composition may differ significantly compared to the samples brought back by the predecessor Chang'e-5 probe. It retrieved a total of 1,700 grams from the surface of the near side of the moon in December 2020.

"From the appearance, we found that the Chang'e-6 samples look stickier than previous [lunar] samples and are more compacted, which is clear to see. Certainly, we also look forward to new scientific discoveries and results through systematic follow-up work," said Ge Ping, a spokesman for the Chang'e-6 mission.

The scientific research regarding these samples will involve multiple academic disciplines and research directions, including conducting basic physical and chemical properties analysis, as well as in-depth geological and geochemical studies, with scientists expected to have the opportunity to delve into the secrets contained within these precious samples in the coming months.

"As for the next step, the National Astronomical Observatories of Chinese Academy of Sciences, which is the general unit of the ground system of our lunar mission, will first unseal the sample container, and then prepare the samples obtained from drilling and surface retrieval, and pack them for storage. At the same time, according to the regulations on lunar sample management issued by the China National Space Administration, it is expected that applications will be open to domestic scientific research institutions and scientists after half a year," said Ge.

The Chang'e-6 probe, comprising an orbiter, a lander, an ascender and a returner, was launched on May 3, 2024, from south China's tropical island province of Hainan.

Supported by the Queqiao-2 relay satellite—put into position shortly before the mission to aid communication with the 'dark side' of the Moon—the lander-ascender combination landed at the designated lunar landing area in the South Pole-Aitken (SPA) Basin on June 2 and began its pivotal sampling work.

The colossal SPA Basin was formed by a celestial impact over 4.3 billion years ago and has a diameter of 2,500 km and a depth of about 13 km. It is believed to be the largest impact crater found in the inner solar system so far.

Experts believe the study of the samples will increase understandings of the formation of Earth, the Moon, and the solar system, and could advance efforts to learn how to use resources on the moon for future space exploration.

China had already been the first country to achieve a successful soft landing on the Moon's far side with its Chang'e-4 mission back in 2019.

Earlier this month, an expert involved in planning the fourth phase of China's lunar exploration projects, said the future Chang'e-7 and 8 missions will help pave the way for the development of deep space exploration technologies, and enable China to push ahead with its plan for establishing a scientific research station on the Moon to carry out long-term research.


Video Credit: China Central Television (CCTV) Video News Agency

Duration: 1 minute, 28 seconds

Release Date: June 28, 2024


#NASA #CNSA #ESA #Space #Astronomy #Science #China #中国 #Beijing #北京 #Moon #Change6 #嫦娥六号 #LunarSampleReturn #FarSide #SouthPole #Queqiao2Satellite #SpaceTechnology #SpaceExploration #SolarSystem #InternationalCooperation #History #STEM #Education #HD #Video

NASA's Space to Ground: Laying the Groundwork | Week of June 28, 2024

NASA's Space to Ground: Laying the Groundwork | Week of June 28, 2024

NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Preparations continue for a spacewalk at the International Space Station planned for next week. In the meantime, the orbital residents are rebuilding advanced plumbing gear and servicing video and science hardware.

Expedition 71 Updates: 

https://blogs.nasa.gov/spacestation/

Expedition 71 Crew
Station Commander: Oleg Kononenko (Russia)
Roscosmos (Russia): Nikolai Chub, Alexander Grebenkin (Russia)
NASA: Tracy Dyson, Matthew Dominick, Mike Barrett, Jeanette Epps
NASA’s Boeing Crew Flight Test astronauts Suni Williams and Butch Wilmore

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation

Science, Technology, Engineering, Math (STEM)


Video Credit: NASA's Johnson Space Center (JSC)

Duration: 3 minutes, 29 seconds

Release Date: June 28, 2024


#NASA #Space #Earth #ISS #Science #SpaceTechnology #SpaceLaboratory #Engineering #Astronauts #UnitedStates #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition71 #STEM #Education #HD #Video

Thursday, June 27, 2024

Pan of Spiral Galaxy NGC 3254: A Galactic Powerhouse | Hubble

Pan of Spiral Galaxy NGC 3254: A Galactic Powerhouse | Hubble

This image shows the spiral galaxy NGC 3254, observed using Hubble's Wide Field Camera 3 (WFC3). WFC3 has the capacity to observe ultraviolet, visible and near-infrared light, and this image is a composite of observations taken in the visible and infrared. In this image, NGC 3254 looks like a typical spiral galaxy, viewed side-on. However, NGC 3254 has a fascinating secret that it is hiding in plain sight—it is a Seyfert galaxy, meaning that it has an extraordinarily active core, known as an active galactic nucleus, which releases as much energy as the rest of the galaxy put together. 


Distance: 118 million light years

Seyfert galaxies are not rare—about 10% of all galaxies are thought to be Seyfert galaxies. They belong to the class of “active galaxies”—galaxies that have supermassive black holes at their centers that are actively accreting material. They release vast amounts of radiation as it is accreted. There is a second, far more active, type of active galaxy that is known as a quasar. The active cores of Seyfert galaxies, such as NGC 3254, are brightest when observed in light outside the visible spectrum. At other wavelengths, this image would look very different, with the galaxy’s core shining extremely brightly.


Credit: European Space Agency (ESA)/Hubble & NASA, A. Riess et al.

Duration: 30 seconds

Release Date: June 14, 2021


#NASA #ESA #Astronomy #Space #Hubble #Galaxies #Galaxy #NGC3254 #SpiralGalaxy #LeoMinor #Constellation #Cosmos #Universe #SpaceTelescope #WFC3 #GSFC #STScI #UnitedStates #Europe #STEM #Education #HD #Video

Spiral Galaxy NGC 3254: A Galactic Powerhouse | Hubble

Spiral Galaxy NGC 3254: A Galactic Powerhouse | Hubble


This image shows the spiral galaxy NGC 3254, observed using Hubble's Wide Field Camera 3 (WFC3). WFC3 has the capacity to observe ultraviolet, visible and near-infrared light, and this image is a composite of observations taken in the visible and infrared. In this image, NGC 3254 looks like a typical spiral galaxy, viewed side-on. However, NGC 3254 has a fascinating secret that it is hiding in plain sight—it is a Seyfert galaxy, meaning that it has an extraordinarily active core, known as an active galactic nucleus, which releases as much energy as the rest of the galaxy put together. 

Distance: 118 million light years

Seyfert galaxies are not rare—about 10% of all galaxies are thought to be Seyfert galaxies. They belong to the class of “active galaxies”—galaxies that have supermassive black holes at their centers that are actively accreting material. They release vast amounts of radiation as it is accreted. There is a second, far more active, type of active galaxy that is known as a quasar. The active cores of Seyfert galaxies, such as NGC 3254, are brightest when observed in light outside the visible spectrum. At other wavelengths, this image would look very different, with the galaxy’s core shining extremely brightly.


Credit: European Space Agency (ESA)/Hubble & NASA, A. Riess et al.

Release Date: June 14, 2021


#NASA #ESA #Astronomy #Space #Hubble #Galaxies #Galaxy #NGC3254 #SpiralGalaxy #LeoMinor #Constellation #Cosmos #Universe #SpaceTelescope #WFC3 #GSFC #STScI #UnitedStates #Europe #STEM #Education

A Golden Atmospheric Glow Crowns Earth's Horizon | International Space Station

A Golden Atmospheric Glow Crowns Earth's Horizon | International Space Station

A long exposure shot taken aboard the International Space Station shows a golden atmospheric glow crowning Earth's horizon as the orbiting laboratory soared 267 miles over the South Pacific Ocean.

The orange hue enveloping Earth is known as airglow—diffuse bands of light that stretch 50 to 400 miles into our atmosphere. The phenomenon typically occurs when molecules (mostly nitrogen and oxygen) are energized by ultraviolet (UV) radiation from sunlight. To release that energy, atoms in the lower atmosphere bump into each other and lose energy in the collision. The result is colorful airglow.

Airglow reveals the workings of the upper reaches of our atmosphere. It can help scientists learn about the movement of particles near the interface of Earth and space, including the connections between space weather and Earth weather. Satellites offer one way to study this dynamic zone. NASA’s Ionospheric Connection Explorer (ICON) satellite, launched in 2019, is helping scientists understand the physical processes at work where Earth’s atmosphere interacts with near-Earth space.

Learn more about ICON:

https://science.nasa.gov/mission/icon

Expedition 71 Updates: 

https://blogs.nasa.gov/spacestation/

Expedition 71 Crew
Station Commander: Oleg Kononenko (Russia)
Roscosmos (Russia): Nikolai Chub, Alexander Grebenkin (Russia)
NASA: Tracy Dyson, Matthew Dominick, Mike Barrett, Jeanette Epps

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation

Science, Technology, Engineering, Math (STEM)


Image Credit: NASA's Johnson Space Center (JSC)

Image Date: June 23, 2024


#NASA #Space #Planet #Earth #Atmosphere #Airglow #ISS #Science #SpaceTechnology #SpaceLaboratory #Engineering #UnitedStates #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition71 #STEM #Education

A Tour of The Serpens Nebula | James Webb Space Telescope

A Tour of The Serpens Nebula | James Webb Space Telescope

 

This video tours the Serpens Nebula, a star-forming region that lies 1,300 light-years away from Earth.

A new image of Serpens from NASA’s James Webb Space Telescope shows an intriguing group of aligned protostellar outflows within one region of the nebula. Protostellar outflows are formed when jets of gas spewing from newborn stars collide with nearby gas and dust at high speeds.

This region is also home to several captivating features—the flapping shadow of a planet-forming disk, nicknamed the “Bat Shadow,” areas of varying density that appear as crevices, and a special binary protostar.


Credits: 

Video: Danielle Kirshenblat (STScI)

Image: NASA, ESA, CSA, STScI

Science: Klaus Pontoppidan (NASA-JPL), Joel Green (STScI)

Duration: 2 minutes, 49 seconds

Release Date: June 27, 2024

#NASA #Astronomy #Space #Science #Nebulae #Nebula #SerpensNebula #Stars #Jets #ProtostellarOutflows #Serpens #Constellation #Universe #JamesWebb #SpaceTelescope #JWST #Infrared #UnfoldTheUniverse #ESA #CSA #GSFC #STSc #UnitedStates #STEM #Education #HD #Video

New Mars Images: June 2024 | NASA Mars Curiosity & Perseverance Rovers

New Mars Images: June 2024 | NASA Mars Curiosity & Perseverance Rovers

MSL - sol 4164
Mars 2020 - sol 1175
Mars 2020 - sol 1177
MSL - sol 4219
MSL - sol 4216
Mars 2020 - sol 1188
Mars 2020 - sol 1179
MSL - sol 4206

Support FriendsofNASA.org

Celebrating 11+ Years on Mars (2012-2024)
Mission Name: Mars Science Laboratory (MSL)
Rover Name: Curiosity
Main Job: To determine if Mars was ever habitable to microbial life. 
Launch: Nov. 6, 2011
Landing Date: Aug. 5, 2012, Gale Crater, Mars

Celebrating 3+ Years on Mars
Mission Name: Mars 2020
Rover Name: Perseverance
Main Job: Seek signs of ancient life and collect samples of rock and regolith (broken rock and soil) for return to Earth.
Launch: July 30, 2020    
Landing: Feb. 18, 2021, Jezero Crater, Mars

For more information on NASA's Mars missions, visit: mars.nasa.gov

Image Credits: NASA/JPL-Caltech/ASU/MSSS
Processing: Kevin M. Gill
Image Release Dates: June 11-24, 2024

#NASA #Space #Astronomy #Science #Mars #RedPlanet #Planet #Astrobiology #Geology #CuriosityRover #MSL #MountSharp #GaleCrater #PerseveranceRover #Mars2020 #JezeroCrater #Robotics #SpaceTechnology #SpaceEngineering #JPL #Caltech #UnitedStates #CitizenScience #KevinGill #STEM #Education

Black Hole Star Shredder (Animation) | DESY

Black Hole Star Shredder (Animation) | DESY

Multi-Messenger Observations Reveal Cosmic Particle Accelerator

When an unfortunate star in the constellation Delphinus came too close to the supermassive black hole at the center of its home galaxy, it was stretched more and more by the enormous tidal forces until it was finally disrupted. Half of the stellar debris was flung back into space, while the remaining part formed a rotating accretion disk where two strong outflows of matter shot up and down. The system acts as a powerful natural particle accelerator. Scientists caught a single neutrino hurled towards Earth by this system. 

Note: Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event.


DESY, short for Deutsches Elektronen-Synchrotron (English: German Electron Synchrotron), is a national research center for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators.

Motto: "The Decoding of Matter"

Learn more about DESY: 

Video Credit: Deutsches Elektronen-Synchrotron (DESY)

Duration: 52 seconds

Release Date: Feb. 22, 2021



#NASA #Astronomy #Space #Science #Stars #Star #BlackHoles #SupermassiveBlackHoles #Delphinus #Constellation #Astrophysics #Cosmos #Universe #DESY #Germany #Deutschland #UnitedStates #STEM #Education #Visualization #Animation #HD #Video #APoD

Wednesday, June 26, 2024

Science Mission Recap: China's Chang'e-6 Returns Far Side Moon Samples to Earth

Science Mission Recap: China's Chang'e-6 Returns Far Side Moon Samples to Earth

China's Chang'e-6 probe has made history after completing its 53-day mission on Tuesday, June 25, 2024, becoming the first spacecraft to successfully retrieve and return precious samples from the mysterious far side of the Moon and bringing mankind closer to understanding our enigmatic celestial neighbor.

The return capsule touched down at the designated landing site in the Siziwang Banner of north China's Inner Mongolia Autonomous Region at 14:07 (Beijing Time) Tuesday, with the China National Space Administration (CNSA) declaring the mission a complete success, marking another remarkable achievement in China's space exploration endeavors.

The momentous Chang'e-6 mission was considered one of the most complex and challenging undertakings in China's space exploration efforts to date, as the country attempted to complete a feat never dared before.

Consisting of an orbiter, a returner, a lander and an ascender, the probe was launched from the tropical southern island province of Hainan on May 3, 2024, with the mission overcoming many obstacles during its key stages, including completing the near-moon braking maneuver to enter lunar orbit and seeing the separation of the lander-ascender combination and the orbiter-returner combination. All went as planned.

Supported by the Queqiao-2 relay satellite—put into position shortly before the mission to aid communication with the 'dark side' of the Moon—the lander-ascender combination landed at the designated lunar landing area in the South Pole-Aitken (SPA) Basin on June 2 and began its pivotal sampling work.

After two days on the lunar surface, the ascender took off from the moon and entered lunar orbit. A further two days later, it completed rendezvous and docking with the orbiter-returner combination and carefully transferred the precious cargo to the return vehicle. The ascender then separated from the combination and later landed on the moon under the guidance of the ground control team.

The orbiter-returner combination then spent 13 days in lunar orbit, awaiting the right window of opportunity to make its return to Earth. After completing two Moon-Earth transfer maneuvers and one orbital correction, the returner separated from the orbiter and began its journey back to Earth, culminating in Tuesday's historic touchdown.


Video Credit: China Central Television (CCTV)

Duration: 2 minutes

Release Date: June 25, 2024


#NASA #CNSA #ESA #Space #Astronomy #Science #China #中国 #Moon #Change6 #嫦娥六号 #LunarSampleReturn #FarSide #SouthPole #Queqiao2Satellite #SpaceTechnology #SpaceExploration #SolarSystem #InternationalCooperation #SiziwangBanner #InnerMongolia #History #STEM #Education #HD #Video

US Weather Satellite GOES-U Successfully Launched to Orbit | Lockheed Martin

US Weather Satellite GOES-U Successfully Launched to Orbit | Lockheed Martin

The GOES-U weather observation satellite we built for the National Oceanic and Atmospheric Administration (NOAA) successfully launched from NASA's Kennedy Space Center at 5:26 p.m. ET on June 25, 2024.

GOES-U, the final satellite in NOAA's Geostationary Operational Environmental Satellites (GOES) - R series of four satellites, will provide advanced weather imagery, atmospheric measurements and real-time mapping of lightning activity, in addition to critical space weather observations.

Following GOES-U, we were selected by NASA to develop the nation's next generation weather satellite constellation, Geostationary Extended Observations (GeoXO), for NOAA. GeoXO's new capabilities will deliver more accurate weather forecasting and address emerging environmental issues and challenges. GeoXO, the GOES-R series and the nation's weather satellites are vital infrastructure for national resilience.


Video Credit: Lockheed Martin Space

Duration: 1 minute

Release Date: June 26, 2024


#NASA #NOAA #Sun #Planet #Earth #Science #Satellites #GeostationarySatellites #SpaceWeather #Coronagraph #Weather #Meteorology #GOESU #GOES19 #NorthAmerica #EarthObservation #RemoteSensing #GSFC #LockheedMartin #SpaceX #FalconHeavy #RocketLaunch #KSC #Florida #UnitedStates #STEM #Education #HD #Video

Chang'e-6 Mission Far Side South Pole Moon Samples Arrive in Beijing

Chang'e-6 Mission Far Side South Pole Moon Samples Arrive in Beijing

The returner of the Chang'e-6 lunar probe was opened at a ceremony in Beijing on Wednesday afternoon, June 26, 2024. It touched down safely to Earth, June 25, in Siziwang Banner, north China's Inner Mongolia Autonomous Region. It brought back the world's first samples collected from the Moon's far side south polar region. These are critical for a better understanding of the Moon's origin, its geological history, and its interactions with our planet.

Launched on May 3, 2024, the Chang'e-6 spacecraft has successfully completed its complex and challenging 53-day mission. It included landing on the Moon's far side, collecting south polar region samples, ascending, docking, and returning.

Samples were collected from the South Pole-Aitken (SPA) basin (43°±2° south latitude, 154°±4° west longitude)—a large impact crater on the far side of the Moon. At roughly 2,500 km (1,600 mi) in diameter and between 6.2 and 8.2 km (3.9–5.1 mi) deep, it is the largest, oldest, and deepest basin recognized on the Moon.

The Chang'e-6 Moon mission featured scientific instruments from France, Italy, Sweden, and Pakistan. The international scientific payloads carried by the Chang'e-6 mission included the French radon gas detector (CNES), the European Space Agency/Swedish ion analyzer, and the Italian laser corner reflector (Italian Space Agency), as well as the Pakistani ICUBE-Q cube lunar satellite. 

On March 20, 2024, the Queqiao-2 lunar relay satellite was launched and put into orbit in order to facilitate Chang'e-6 mission communications between the far side of the Moon and the Earth.


Credit: China Central Television (CCTV) Video News Agency

Release Date: June 26, 2024


#NASA #CNSA #ESA #Space #Astronomy #Science #China #中国 #Beijing #北京 #Moon #Change6 #嫦娥六号 #LunarSampleReturn #FarSide #SouthPole #Queqiao2Satellite #SpaceTechnology #SpaceExploration #SolarSystem #InternationalCooperation #History #STEM #Education #HD #Video