Nov. 7, 2018: Peering through thick walls of gas and dust surrounding the messy cores of merging galaxies, astronomers are getting their best view yet of close pairs of supermassive black holes as they march toward coalescence into mega black holes.
A team of researchers led by Michael Koss of Eureka Scientific Inc., in Kirkland, Washington, performed the largest survey of the cores of nearby galaxies in near-infrared light, using high-resolution images taken by NASA's Hubble Space Telescope and the W. M. Keck Observatory in Hawaii. The Hubble observations represent over 20 years' worth of snapshots from its vast archive.
"Seeing the pairs of merging galaxy nuclei associated with these huge black holes so close together was pretty amazing," Koss said. "In our study, we see two galaxy nuclei right when the images were taken. You can't argue with it; it's a very 'clean' result, which doesn't rely on interpretation."
The images also provide a close-up preview of a phenomenon that must have been more common in the early universe, when galaxy mergers were more frequent. When galaxies collide, their monster black holes can unleash powerful energy in the form of gravitational waves, the kind of ripples in space-time that were just recently detected by ground-breaking experiments.
The new study also offers a preview of what will likely happen in our own cosmic backyard, in several billion years, when our Milky Way combines with the neighboring Andromeda galaxy and their respective central black holes smash together.
"Computer simulations of galaxy smashups show us that black holes grow fastest during the final stages of mergers, near the time when the black holes interact, and that's what we have found in our survey," said study team member Laura Blecha of the University of Florida, in Gainesville. "The fact that black holes grow faster and faster as mergers progress tells us galaxy encounters are really important for our understanding of how these objects got to be so monstrously big."
A galaxy merger is a slow process lasting more than a billion years as two galaxies, under the inexorable pull of gravity, dance toward each other before finally joining together. Simulations reveal that galaxies kick up plenty of gas and dust as they undergo this slow-motion train wreck.
The ejected material often forms a thick curtain around the centers of the coalescing galaxies, shielding them from view in visible light. Some of the material also falls onto the black holes at the cores of the merging galaxies. The black holes grow at a fast clip as they engorge themselves with their cosmic food, and, being messy eaters, they cause the infalling gas to blaze brightly. This speedy growth occurs during the last 10 million to 20 million years of the union. The Hubble and Keck Observatory images captured close-up views of this final stage, when the bulked-up black holes are only about 3,000 light-years apart—a near-embrace in cosmic terms.
It's not easy to find galaxy nuclei so close together. Most prior observations of colliding galaxies have caught the coalescing black holes at earlier stages when they were about 10 times farther away. The late stage of the merger process is so elusive because the interacting galaxies are encased in dense dust and gas and require high-resolution observations in infrared light that can see through the clouds and pinpoint the locations of the two merging nuclei.
The team first searched for visually obscured, active black holes by sifting through 10 years' worth of X-ray data from the Burst Alert Telescope (BAT) aboard NASA's Neil Gehrels Swift Telescope, a high-energy space observatory. "Gas falling onto the black holes emits X-rays, and the brightness of the X-rays tells you how quickly the black hole is growing," Koss explained. "I didn't know if we would find hidden mergers, but we suspected, based on computer simulations, that they would be in heavily shrouded galaxies.Therefore we tried to peer through the dust with the sharpest images possible, in hopes of finding coalescing black holes."
The researchers combed through the Hubble archive, identifying those merging galaxies they spotted in the X-ray data. They then used the Keck Observatory's super-sharp, near-infrared vision to observe a larger sample of the X-ray-producing black holes not found in the Hubble archive.
"People had conducted studies to look for these close interacting black holes before, but what really enabled this particular study were the X-rays that can break through the cocoon of dust," Koss said. "We also looked a bit farther in the universe so that we could survey a larger volume of space, giving us a greater chance of finding more luminous, rapidly growing black holes."
The team targeted galaxies with an average distance of 330 million light-years from Earth. Many of the galaxies are similar in size to the Milky Way and Andromeda galaxies. The team analyzed 96 galaxies from the Keck Observatory and 385 galaxies from the Hubble archive found in 38 different Hubble observation programs. The sample galaxies are representative of what astronomers would find by conducting an all-sky survey.
To verify their results, Koss's team compared the survey galaxies with 176 other galaxies from the Hubble archive that lack actively growing black holes. The comparison confirmed that the luminous cores found in the researchers' census of dusty interacting galaxies are indeed a signature of rapidly growing black-hole pairs headed for a collision.
When the two supermassive black holes in each of these systems finally come together in millions of years, their encounters will produce strong gravitational waves. Gravitational waves produced by the collision of two stellar-mass black holes have already been detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). Observatories such as the planned NASA/ESA space-based Laser Interferometer Space Antenna (LISA) will be able to detect the lower-frequency gravitational waves from supermassive black-hole mergers, which are a million times more massive than those detected by LIGO.
Future infrared telescopes, such as NASA's planned James Webb Space Telescope and a new generation of giant ground-based telescopes, will provide an even better probe of dusty galaxy collisions by measuring the masses, growth rate, and dynamics of close black-hole pairs. The Webb telescope may also be able to look in mid-infrared light to uncover more galaxy interactions so encased in thick gas and dust that even near-infrared light cannot penetrate them.
The team's results appear online in the Nov. 7, 2018, issue of the journal Nature:
https://www.nature.com/articles/s41586-018-0652-7
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.
Credit:
NASA, ESA, and M. Koss (Eureka Scientific, Inc.); Hubble image: NASA, ESA, and M. Koss (Eureka Scientific, Inc.); Keck images: W. M. Keck Observatory and M. Koss (Eureka Scientific, Inc.); Pan-STARRS images: Panoramic Survey Telescope and Rapid Response System and M. Koss (Eureka Scientific, Inc.)
Release Date: November 7, 2018
#NASA #Hubble #Astronomy #Space #Science #Galaxies #Collisions #BlackHoles #Cosmos #Universe #Astrophysics #Telescope #Keck #Observatory #Hawaii #ESA #Goddard #GSFC #STScI #STEM #Education
Friends of NASA (FoN) is an independent non-governmental organization (NGO) dedicated to building international support for peaceful space exploration, commerce, scientific discovery, and STEM education.
Thursday, November 08, 2018
Monday, November 05, 2018
Jupiter & Io | Hubble
This image represents Jupiter as it appeared on April 3, 2017 at 02:50:19 UTC.
Io (Jupiter I) is the innermost of the four Galilean moons of the planet Jupiter. It is the fourth-largest moon, has the highest density of all the moons, and has the least amount of water of any known astronomical object in the Solar System. It was discovered in 1610 and was named after the mythological character Io, a priestess of Hera who became one of Zeus' lovers. (Source: Wikipedia)
Technical details:
Red: WFC3/UVIS F631N
Green: WFC3/UVIS F502N
Blue: WFC3/UVIS 395N
North is 50.56° clockwise from up.
Data from the following proposal comprises this image:
Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program
Credit: NASA/ESA
Processing: Judy Schmidt
Image Date: April 3, 2017
Release Date: November 3, 2018
#NASA #Hubble #Space #Astronomy #Science #Jupiter #Planet #Moon #Io #SolarSystem #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education
Io (Jupiter I) is the innermost of the four Galilean moons of the planet Jupiter. It is the fourth-largest moon, has the highest density of all the moons, and has the least amount of water of any known astronomical object in the Solar System. It was discovered in 1610 and was named after the mythological character Io, a priestess of Hera who became one of Zeus' lovers. (Source: Wikipedia)
Technical details:
Red: WFC3/UVIS F631N
Green: WFC3/UVIS F502N
Blue: WFC3/UVIS 395N
North is 50.56° clockwise from up.
Data from the following proposal comprises this image:
Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program
Credit: NASA/ESA
Processing: Judy Schmidt
Image Date: April 3, 2017
Release Date: November 3, 2018
#NASA #Hubble #Space #Astronomy #Science #Jupiter #Planet #Moon #Io #SolarSystem #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education
Sunday, November 04, 2018
Saturn & Rhea | NASA Cassini Mission
Processed using calibrated red, green, and blue filtered images of Saturn and Rhea taken by the Cassini spacecraft on November 4, 2009.
Rhea is the second-largest moon of Saturn and the ninth-largest moon in the Solar System. It is the second smallest body in the Solar System—after the asteroid and dwarf planet Ceres—for which precise measurements have confirmed a shape consistent with hydrostatic equilibrium. It was discovered in 1672 by Giovanni Domenico Cassini.
(Source: Wikipedia)
The Cassini-Huygens mission was a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.
For more information about Cassini, go to:
https://www.nasa.gov/cassini
https://saturn.jpl.nasa.gov
Credit: NASA/JPL-Caltech/SSI/CICLOPS/Kevin M. Gill
Image Date: November 4, 2009
Release Date: November 4, 2018
#NASA #Astronomy #Science #Space #Saturn #Rings #Planet #Moon #Rhea #SolarSystem #Exploration #Cassini #Spacecraft #JPL #Pasadena #California #UnitedStates #ESA #ASI #History #STEM #Education
Rhea is the second-largest moon of Saturn and the ninth-largest moon in the Solar System. It is the second smallest body in the Solar System—after the asteroid and dwarf planet Ceres—for which precise measurements have confirmed a shape consistent with hydrostatic equilibrium. It was discovered in 1672 by Giovanni Domenico Cassini.
(Source: Wikipedia)
The Cassini-Huygens mission was a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.
For more information about Cassini, go to:
https://www.nasa.gov/cassini
https://saturn.jpl.nasa.gov
Credit: NASA/JPL-Caltech/SSI/CICLOPS/Kevin M. Gill
Image Date: November 4, 2009
Release Date: November 4, 2018
#NASA #Astronomy #Science #Space #Saturn #Rings #Planet #Moon #Rhea #SolarSystem #Exploration #Cassini #Spacecraft #JPL #Pasadena #California #UnitedStates #ESA #ASI #History #STEM #Education
Saturday, November 03, 2018
Inside NASA's Kennedy Space Center! | Week of Nov. 2, 2018
Credit: NASA's Kennedy Space Center (KSC)
Duration: 1 minute, 46 seconds
Release Date: November 2, 2018
#NASA #Space #Orion #Spacecraft #SLS #Astronauts #Earth #Sunset #California #Pacific #Ocean #Drone #UAV #Mars #JourneytoMars #DeepSpace #SolarSystem #Exploration #Navy #Kennedy #KSC #Spaceport #Florida #Military #USA #UnitedStates #STEM #Education #HD #Video
NASA Orion & US Navy: Aerial Drone Captures Recovery Test
Credit: NASA's Kennedy Space Center
Duration: 3 minutes, 45 seconds
Release Date: November 2, 2018
#NASA #Space #Orion #Spacecraft #SLS #Astronauts #Earth #Sunset #California #Pacific #Ocean #Drone #UAV #Mars #JourneytoMars #DeepSpace #SolarSystem #Exploration #Navy #Military #USA #UnitedStates #STEM #Education #HD #Video
Jupiter's Maelstroms | NASA Juno Mission
Pictures captured by the Juno spacecraft performing its 16th close flyby of Jupiter: Perijove 16. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft’s JunoCam imager.
JPL manages the Juno mission for NASA. The mission's principal investigator is Scott Bolton of Southwest Research Institute in San Antonio. The mission is part of NASA's New Frontiers Program, managed at the agency's Marshall Space Flight Center in Huntsville, Alabama, for NASA's Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft.
Learn more about the Juno mission, and get an up-to-date schedule of events, at: www.nasa.gov/juno and http://missionjuno.org
Credit: NASA/JPL/Caltech/SwRI/MSSS
Processing: Gerald Eichstädt/Seán Doran
#NASA #Astronomy #Space #Science #Jupiter #Planet #Atmosphere #Weather #Meteorology #Juno #Spacecraft #Perijove16 #Exploration #SolarSystem #Technology #Engineering #STEM #Education #JPL #Pasadena #California #USA #UnitedStates #LockheedMartin #MSFC #Marshall #SwRI #CitizenScience #STEM #Education
JPL manages the Juno mission for NASA. The mission's principal investigator is Scott Bolton of Southwest Research Institute in San Antonio. The mission is part of NASA's New Frontiers Program, managed at the agency's Marshall Space Flight Center in Huntsville, Alabama, for NASA's Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft.
Learn more about the Juno mission, and get an up-to-date schedule of events, at: www.nasa.gov/juno and http://missionjuno.org
Credit: NASA/JPL/Caltech/SwRI/MSSS
Processing: Gerald Eichstädt/Seán Doran
#NASA #Astronomy #Space #Science #Jupiter #Planet #Atmosphere #Weather #Meteorology #Juno #Spacecraft #Perijove16 #Exploration #SolarSystem #Technology #Engineering #STEM #Education #JPL #Pasadena #California #USA #UnitedStates #LockheedMartin #MSFC #Marshall #SwRI #CitizenScience #STEM #Education
Friday, November 02, 2018
Tonight's Sky: November 2018 | HubbleSite
“Tonight’s Sky” is produced by HubbleSite.org
Credit: HubbleSite
Duration: 5 minutes, 40 seconds
Release Date: October 24, 2018
#NASA #Astronomy #Space #Science #Earth #Taurid #Leonids #MeteorShower #Comet64P #Moon #Planets #Mars #Saturn #Rings #Venus #Stars #SolarSystem #Skywatching #STEM #Education #UnitedStates #Canada #NorthernHemisphere #HD #Video
Skywatching: What's Up for November 2018 | JPL
November brings planets, an asteroid, a comet and the Leonids.
Credit: NASA's Jet Propulsion Laboratory (JPL)
Duration: 2 minutes, 27 seconds
Release Date: November 1, 2018
#NASA #Astronomy #Space #Science #Skywatching #Asteroid #Juno #Comet46P #Meteor #MeteorShower #Leonids #Moon #Venus #Mars #InSight #Lander #Planets #SolarSystem #Stars #Constellations #MilkyWay #Galaxy #JPL #Pasadena #California #UnitedStates #STEM #Education #HD #Video
The Closest Spacecraft to the Sun on This Week @NASA | Week of Nov. 2, 2018
A new record for our mission to the Sun, the end of an era for a prolific planet hunter, and our next mission to Mars is closing in on its destination . . . a few of the stories to tell you about—This Week at NASA!
Credit: NASA
Duration: 4 minutes, 4 seconds
Release Date: November 2, 2018
#NASA #Astronomy #Science #Space #Kepler #Exoplanets #Mars #Insight #SpaceWeather #Sun #Solar #Corona #Star #Astrophysics #Spacecraft #Probe #SolarProbe #Parker #EugeneParker #Astrophysicist #Chicago #University #JHUAPL #Goddard #UnitedStates #STEM #Education #HD #Video
NASA's Space to Ground: Getting a Grip Week of | Nov. 2, 2018
Week of Nov. 2, 2018: NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
Credit: NASA's Johnson Space Center (JSC)
Duration: 2 minutes, 19 seconds
Release Date: November 2, 2018
#NASA #Space #ISS #Science #Research #Microgravity #Astronauts #ESA #AlexanderGerst #Germany #Deutschland #DLR #SerenaAuñónChancellor #Cosmonaut #SergeyProkopyev #Russia #Россия #MikeHopkins #SpaceX #CrewDragon #Expedition57 #Human #Spaceflight #Spacecraft #JSC #Houston #Texas #UnitedStates #STEM #Education #HD #Video
Tuesday, October 30, 2018
Zoom-in on the Ghost Nebula | Hubble
Credit: Hubble, Digitized Sky Survey 2, N. Risinger (skysurvey.org)
Music: Astral Electronic
Duration: 50 seconds
Release Date: October 25, 2018
#NASA #Hubble #Astronomy #Space #Science #Nebula #IC63 #Star #GammaCassiopeiae #Cassiopeia #Cosmos #Universe #Halloween #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education #HD #Video
The Ghost of Cassiopeia: Wide-field view
Ground-based view of the sky around IC 63
This image shows the sky around the nebula IC 63, nicknamed the Ghost Nebula. It was created from images forming part of the Digitized Sky Survey 2. The field of view is dominated by the bright star Gamma Cassiopeiae, which is having a profound influence on IC 63.
IC 63 is only one of several nebulous structures surrounding Gamma Cassiopeiae—all of which are affected by the radiation emitted by the blue-white subgiant star.
Credit: ESA/Hubble, NASA, Digitized Sky Survey 2
Acknowledgement: Davide de Martin
Release Date: October 25, 2018
#NASA #Hubble #Astronomy #Space #Science #Nebula #IC63 #Star #GammaCassiopeiae #Cassiopeia #Cosmos #Universe #Halloween #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education
This image shows the sky around the nebula IC 63, nicknamed the Ghost Nebula. It was created from images forming part of the Digitized Sky Survey 2. The field of view is dominated by the bright star Gamma Cassiopeiae, which is having a profound influence on IC 63.
IC 63 is only one of several nebulous structures surrounding Gamma Cassiopeiae—all of which are affected by the radiation emitted by the blue-white subgiant star.
Credit: ESA/Hubble, NASA, Digitized Sky Survey 2
Acknowledgement: Davide de Martin
Release Date: October 25, 2018
#NASA #Hubble #Astronomy #Space #Science #Nebula #IC63 #Star #GammaCassiopeiae #Cassiopeia #Cosmos #Universe #Halloween #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education
Monday, October 29, 2018
The Ghost of Cassiopeia | Hubble
About 550 light-years away in the constellation of Cassiopeia lies IC 63, a stunning and slightly eerie nebula. Also known as the ghost of Cassiopeia, IC 63 is being shaped by radiation from a nearby unpredictably variable star, Gamma Cassiopeiae, which is slowly eroding away the ghostly cloud of dust and gas. This celestial ghost makes the perfect backdrop for the upcoming feast of All Hallow's Eve—better known as Halloween.
The constellation of Cassiopeia, named after a vain queen in Greek mythology, forms the easily recognizable “W” shape in the night sky. The central point of the W is marked by a dramatic star named Gamma Cassiopeiae.
The remarkable Gamma Cassiopeiae is a blue-white subgiant variable star that is surrounded by a gaseous disc. This star is 19 times more massive and 65,000 times brighter than our Sun. It also rotates at the incredible speed of 1.6 million kilometers per hour—more than 200 times faster than our parent star. This frenzied rotation gives it a squashed appearance. The fast rotation causes eruptions of mass from the star into a surrounding disk. This mass loss is related to the observed brightness variations.
The radiation of Gamma Cassiopeiae is so powerful that it even affects IC 63, sometimes nicknamed the Ghost Nebula, that lies several light years away from the star. IC 63 is visible in this image taken by the NASA/ESA Hubble Space Telescope.
The colors in the eerie nebula showcase how the nebula is affected by the powerful radiation from the distant star. The hydrogen within IC 63 is being bombarded with ultraviolet radiation from Gamma Cassiopeiae, causing its electrons to gain energy which they later release as hydrogen-alpha radiation—visible in red in this image.
This hydrogen-alpha radiation makes IC 63 an emission nebula, but we also see blue light in this image. This is light from Gamma Cassiopeiae that has been reflected by dust particles in the nebula, meaning that IC 63 is also a reflection nebula.
This colorful and ghostly nebula is slowly dissipating under the influence of ultraviolet radiation from Gamma Cassiopeiae. However, IC 63 is not the only object under the influence of the mighty star. It is part of a much larger nebulous region surrounding Gamma Cassiopeiae that measures approximately two degrees on the sky—roughly four times as wide as the full Moon.
This region is best seen from the Northern Hemisphere during autumn and winter. Though it is high in the sky and visible all year round from Europe, it is very dim, so observing it requires a fairly large telescope and dark skies.
From above Earth’s atmosphere, Hubble gives us a view that we cannot hope to see with our eyes. This photo is possibly the most detailed image that has ever been taken of IC 63, and it beautifully showcases Hubble’s capabilities.
More information
The Hubble Space Telescope is a project of international cooperation between ESA and NASA.
Image Credit: NASA, ESA
Release Date: October 25, 2018
#NASA #Hubble #Astronomy #Space #Science #Nebula #IC63 #Star #GammaCassiopeiae #Cassiopeia #Cosmos #Universe #Halloween #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education
The constellation of Cassiopeia, named after a vain queen in Greek mythology, forms the easily recognizable “W” shape in the night sky. The central point of the W is marked by a dramatic star named Gamma Cassiopeiae.
The remarkable Gamma Cassiopeiae is a blue-white subgiant variable star that is surrounded by a gaseous disc. This star is 19 times more massive and 65,000 times brighter than our Sun. It also rotates at the incredible speed of 1.6 million kilometers per hour—more than 200 times faster than our parent star. This frenzied rotation gives it a squashed appearance. The fast rotation causes eruptions of mass from the star into a surrounding disk. This mass loss is related to the observed brightness variations.
The radiation of Gamma Cassiopeiae is so powerful that it even affects IC 63, sometimes nicknamed the Ghost Nebula, that lies several light years away from the star. IC 63 is visible in this image taken by the NASA/ESA Hubble Space Telescope.
The colors in the eerie nebula showcase how the nebula is affected by the powerful radiation from the distant star. The hydrogen within IC 63 is being bombarded with ultraviolet radiation from Gamma Cassiopeiae, causing its electrons to gain energy which they later release as hydrogen-alpha radiation—visible in red in this image.
This hydrogen-alpha radiation makes IC 63 an emission nebula, but we also see blue light in this image. This is light from Gamma Cassiopeiae that has been reflected by dust particles in the nebula, meaning that IC 63 is also a reflection nebula.
This colorful and ghostly nebula is slowly dissipating under the influence of ultraviolet radiation from Gamma Cassiopeiae. However, IC 63 is not the only object under the influence of the mighty star. It is part of a much larger nebulous region surrounding Gamma Cassiopeiae that measures approximately two degrees on the sky—roughly four times as wide as the full Moon.
This region is best seen from the Northern Hemisphere during autumn and winter. Though it is high in the sky and visible all year round from Europe, it is very dim, so observing it requires a fairly large telescope and dark skies.
From above Earth’s atmosphere, Hubble gives us a view that we cannot hope to see with our eyes. This photo is possibly the most detailed image that has ever been taken of IC 63, and it beautifully showcases Hubble’s capabilities.
More information
The Hubble Space Telescope is a project of international cooperation between ESA and NASA.
Image Credit: NASA, ESA
Release Date: October 25, 2018
#NASA #Hubble #Astronomy #Space #Science #Nebula #IC63 #Star #GammaCassiopeiae #Cassiopeia #Cosmos #Universe #Halloween #Telescope #ESA #GSFC #Goddard #STScI #STEM #Education
Talking Moon to Mars and more on This Week @NASA
Week of Oct. 26, 2018: A week full of Moon to Mars and more, seeking ideas for future cargo deliveries to our Gateway, and an oddity of an iceberg . . . a few of the stories to tell you about—This Week at NASA!
Credit: National Aeronautics and Space Administration (NASA)
Duration: 3 minutes, 49 seconds
Release Date: October 26, 2018
#NASA #Space #Astronomy #Earth #Science #Mars #JourneyToMars #Moon #SLS #Orion #Spacecraft #Gateway #ISS #Astronauts #Iceberg #Antarctica #OperationIceBridge #STEM #Education #HD #Video
NASA's Space to Ground: Neutron Dance
Credit: NASA's Johnson Space Center
Duration: 2 minutes, 53 seconds
Release Date: October 26, 2018
#NASA #Space #ISS #Science #Research #Combustion #Flammability #Pulsars #Neutron #Stars #Astronauts #AlexanderGerst #SerenaAuñónChancellor #Cosmonaut #SergeyProkopyev #Russia #Россия #Expedition57 #Human #Spaceflight #Spacecraft #JSC #Houston #Texas #UnitedStates #STEM #Education #HD #Video
Wednesday, October 24, 2018
Pirate of the Southern Skies | ESO
The Skull and Crossbones Nebula
Distance: 4500 light years
Oct. 24, 2018: FORS2, an instrument mounted on the European Southern Observatory’s Very Large Telescope, has observed the active star-forming region NGC 2467—sometimes referred to as the Skull and Crossbones Nebula. The image was captured as part of the ESO Cosmic Gems Program, which makes use of the rare occasions when observing conditions are not suitable for gathering scientific data. Instead of sitting idle, the ESO Cosmic Gems Program allows ESO’s telescopes to be used to capture visually stunning images of the southern skies.
This vivid picture of an active star-forming region—NGC 2467, sometimes referred to as the Skull and Crossbones Nebula—is as sinister as it is beautiful. This image of dust, gas and bright young stars, gravitationally bound into the form of a grinning skull, was captured with the FORS instrument on ESO’s Very Large Telescope (VLT). While ESO’s telescopes are usually used for the collection of science data, they can also capture images, such as this—which are beautiful for their own sake.
It is easy to see the motivation for the nickname Skull and Crossbones. This young, bright formation distinctly resembles an ominous hollow face, of which only the gaping mouth is visible here. NGC 2467 skulks in the constellation Puppis, which translates rather unromantically as The Poop Deck.
This nebulous collection of stellar clusters is the birthplace of many stars, where an excess of hydrogen gas provided the raw material for stellar creation. It is not, in fact, a single nebula, and its constituent stellar cluster are moving at different velocities. It is only a fortuitous alignment along the line of sight from the Earth that makes the stars and gas form a humanoid face. This luminous image might not tell astronomers anything new, but it provides us all with a glimpse into the churning southern skies, bright with wonders invisible to the human eye.
Puppis is one of three nautically named constellations that sail the southern skies, and which used to make up the single, giant Argo Navis constellation, named after the ship of the mythical Jason and the Argonauts. Argo Navis has since been divided into three: Carina (the keel), Vela (the sails) and Puppis, where this nebula finds its home. While a heroic figure, Jason is most famous for his theft of the golden fleece, so NGC 2467 rests not only in the midst of a vast celestial ship, but among thieves—an appropriate abode for this piratical nebula.
This image was created as part of the ESO Cosmic Gems program, an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The program makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.
Credit: European Southern Observatory (ESO)
Release Date: October 24, 2018
More information
ESO is the foremost intergovernmental astronomy organization in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious program focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organizing cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-meter Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.
#ESO #Astronomy #Space #Science #Nebula #NGC2467 #Skull #Crossbones #Stars #Puppis #Cosmos #Universe #Telescope #FORS2 #VLT #Observatory #Paranal #Atacama #Desert #Chile #SouthAmerica #Europe #STEM #Education
Oct. 24, 2018: FORS2, an instrument mounted on the European Southern Observatory’s Very Large Telescope, has observed the active star-forming region NGC 2467—sometimes referred to as the Skull and Crossbones Nebula. The image was captured as part of the ESO Cosmic Gems Program, which makes use of the rare occasions when observing conditions are not suitable for gathering scientific data. Instead of sitting idle, the ESO Cosmic Gems Program allows ESO’s telescopes to be used to capture visually stunning images of the southern skies.
This vivid picture of an active star-forming region—NGC 2467, sometimes referred to as the Skull and Crossbones Nebula—is as sinister as it is beautiful. This image of dust, gas and bright young stars, gravitationally bound into the form of a grinning skull, was captured with the FORS instrument on ESO’s Very Large Telescope (VLT). While ESO’s telescopes are usually used for the collection of science data, they can also capture images, such as this—which are beautiful for their own sake.
It is easy to see the motivation for the nickname Skull and Crossbones. This young, bright formation distinctly resembles an ominous hollow face, of which only the gaping mouth is visible here. NGC 2467 skulks in the constellation Puppis, which translates rather unromantically as The Poop Deck.
This nebulous collection of stellar clusters is the birthplace of many stars, where an excess of hydrogen gas provided the raw material for stellar creation. It is not, in fact, a single nebula, and its constituent stellar cluster are moving at different velocities. It is only a fortuitous alignment along the line of sight from the Earth that makes the stars and gas form a humanoid face. This luminous image might not tell astronomers anything new, but it provides us all with a glimpse into the churning southern skies, bright with wonders invisible to the human eye.
Puppis is one of three nautically named constellations that sail the southern skies, and which used to make up the single, giant Argo Navis constellation, named after the ship of the mythical Jason and the Argonauts. Argo Navis has since been divided into three: Carina (the keel), Vela (the sails) and Puppis, where this nebula finds its home. While a heroic figure, Jason is most famous for his theft of the golden fleece, so NGC 2467 rests not only in the midst of a vast celestial ship, but among thieves—an appropriate abode for this piratical nebula.
This image was created as part of the ESO Cosmic Gems program, an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The program makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.
Credit: European Southern Observatory (ESO)
Release Date: October 24, 2018
More information
ESO is the foremost intergovernmental astronomy organization in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious program focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organizing cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-meter Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.
#ESO #Astronomy #Space #Science #Nebula #NGC2467 #Skull #Crossbones #Stars #Puppis #Cosmos #Universe #Telescope #FORS2 #VLT #Observatory #Paranal #Atacama #Desert #Chile #SouthAmerica #Europe #STEM #Education
Subscribe to:
Posts (Atom)