Friends of NASA (FoN) is an independent non-governmental organization (NGO) dedicated to building international support for peaceful space exploration, commerce, scientific discovery, and STEM education.
The Landsat program conceived of in the 1960s, has been running longer than any remote sensing program. The idea was simple: position a satellite in a nearly polar orbit fixed to the solar angle so that each daytime pass would cross the equator at roughly the same local time.
Data representing bands of the spectrum are captured and processed into grayscale recordings, which can be combined to create natural looking views like this or false color views like this. Nine Landsat satellites have been launched in partnership with NASA since 1972.
Expectations were high when Landsat 1 carried two sensors into orbit. This view of Dallas, Texas, was the first cloudless image received. Landsat 1 data led to immediate and fundamental changes to practices of the cartographic and geographic communities. Country borders were redrawn and entire islands were discovered.
Imagery was received and processed at the new USGS EROS Center in South Dakota, which would become the hub of the Landsat archive for the next 50 years. The first three Landsats added a wealth of insight to many areas of science, from forestry and hydrology to cartography, environmental pollution and more.
Landsat 3 data was used in over 400 programs in 31 countries. Groups in Bolivia leaned on Landsat to discover new lithium deposits. Officials in Kenya monitored the relationship between cheetahs and cattle, and engineers in Pakistan studied silt patterns in the data to plan for a new seaport.
The second generation of Landsat was one of great technical innovation. The new thematic mapper sensor offered higher spatial resolution and additional bands, including a thermal band. Landsat 5 launched less than two years after Landsat 4. Landsat 5 was a workhorse for the program, contributing over 2.5 million scenes to the archive.
The Guinness Book of World Records took notice in 2013, marking it the world's longest operating Earth observation satellite. Landsat 7 added to the observation record with years of science value monitoring water quality, glacier recession, fire progression, flooding, population growth and more.
Landsat 8 launched in February 2013. A rapid expansion of science applications included fire observation, permafrost research, desert management, iceberg tracking, volcanic activity, lithium mining and much more. Landsat 9 launched in 2021. The Landsat satellites perform technical wonders in orbit.
However, without a global partnership on the ground, the data they collect would never make it to users. From the beginning, data collection and distribution was directed by the EROS Center in South Dakota. For 50 years, the USGS team at EROS has served the Landsat program by innovating through generations of technology and science.
The archive at EROS is currently home to over 10 million Landsat scenes and growing rapidly. To receive data from the satellite's EROS partners with global ground stations. The current Landsat 8 and 9 ground network consists of five receiving stations in four countries.
These stations download science and telemetry data, which eventually make their way to EROS. Ground stations can also upload commands. Further enriching Landsat's global partnership is the International Cooperative Network. An international cooperator is an international governmental organization with which the USGS enters into a formal agreement for the direct reception of Landsat data.
International cooperators serve their user community by providing direct access to Landsat data in real time and are integral to the Landsat program. Today, the network includes 13 active stations from ten organizations around the world and has contributed over 6.5 million Landsat scenes to the Landsat archive through the Landsat Global Archive Consolidation Initiative.
The USGS meets with the international cooperators twice a year to discuss operational management and technical matters. It is a valuable learning opportunity for every partner involved with Landsat. Together engineers, scientists, community managers and users across the globe have been central to the 50 year success of Landsat.
NASA's SpaceX Crew-3 Astronauts Return from the International Space Station
This Week @NASA—May 6, 2022: The Crew-3 astronauts return from the space station, the spacecraft for another commercial crew mission is on the move, and discussing NASA’s budget . . . a few of the stories to tell you about—This Week at NASA!
The SpaceX Crew-3 Dragon Endurance spacecraft landed with NASA astronauts Raja Chari, Kayla Barron, Tom Marshburn, and European Space Agency (ESA) astronaut Matthias Maurer aboard, in the Gulf of Mexico, off the coast of Tampa, Florida, Friday, May 6, 2022. Maurer, Marshburn, Chari, and Barron returned after 177 days in space as part of Expeditions 66 and 67 aboard the International Space Station (ISS).
Credit: National Aeronautics and Space Administration (NASA)
Samantha & Jessica Talk with CBS News & CNN | International Space Station
Aboard the International Space Station (ISS), Expedition 67 Flight Engineers Jessica Watkins of NASA and Samantha Cristoforetti of the European Space Agency (ESA) discussed life and work aboard the orbital outpost during an in-flight event May 6, 2022, with CBS News and CNN. Watkins and Cristoforetti are in the midst of a planned four-and-a-half month mission living and working aboard the microgravity laboratory to advance scientific knowledge and demonstrate new technologies for future human and robotic exploration missions as part of NASA’s Moon and Mars exploration approach, including lunar missions through NASA’s Artemis program.
An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.
Credit: National Aeronautics and Space Administration (NASA)
NASA’s SpaceX Crew-3 Dragon Spacecraft Arrives in Gulf of Mexico
NASA astronaut Kayla Barron is helped out of the SpaceX Crew Dragon Endurance spacecraft onboard the SpaceX Shannon recovery ship after she and NASA astronauts Raja Chari, Tom Marshburn, and European Space Agency (ESA) astronaut Matthias Maurer landed in the Gulf of Mexico off the coast of Tampa, Florida, Friday, May 6, 2022. Maurer, Marshburn, Chari, and Barron returned after 177 days in space as part of Expeditions 66 and 67 onboard the International Space Station (ISS).
NASA astronaut Raja Chari greets friends after being helped out of the SpaceX Crew Dragon Endurance spacecraft onboard the SpaceX Shannon recovery ship.
NASA astronaut Tom Marshburn greets friends after being helped out of the SpaceX Crew Dragon Endurance spacecraft onboard the SpaceX Shannon recovery ship.
European Space Agency (ESA) astronaut Matthias Maurer is helped out of the SpaceX Crew Dragon Endurance spacecraft onboard the SpaceX Shannon recovery ship.
From left to right, ESA (European Space Agency) astronaut Matthias Maurer, NASA astronauts Tom Marshburn, Raja Chari, and Kayla Barron, are seen inside the SpaceX Crew Dragon Endurance spacecraft onboard the SpaceX Shannon recovery ship shortly after having landed in the Gulf of Mexico off the coast of Tampa, Florida.
Crew-3 received medical checks before the NASA astronauts took a helicopter ride to board a plane for Houston, Texas. Now that his mission has ended, ESA astronaut Matthias Maurer will return to the European Astronaut Centre in Cologne, Germany, where he will participate in post-flight debriefings, provide samples for scientific evaluation and readapt to Earth’s gravity with the support of ESA experts.
An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.
NASA’s SpaceX Crew-3 Dragon Night Landing in Gulf of Mexico
Support teams work around the SpaceX Crew Dragon Endurance spacecraft shortly after it landed with NASA astronauts Raja Chari, Kayla Barron, Tom Marshburn, and European Space Agency (ESA) astronaut Matthias Maurer aboard, in the Gulf of Mexico, off the coast of Tampa, Florida, Friday, May 6, 2022. Maurer, Marshburn, Chari, and Barron returned after 177 days in space as part of Expeditions 66 and 67 aboard the International Space Station (ISS).
Teams on the Shannon recovery ship, including two fast boats, secured Dragon and ensured the spacecraft was safe for the recovery effort. As the fast boat teams completed their work, the recovery ship hoisted Dragon Endurance onto the main deck of Shannon with the astronauts inside. Once on the main deck, the crew was taken out of the spacecraft. They received medical checks before the NASA astronauts took a helicopter ride to board a plane for Houston.
Now that his mission has ended, ESA astronaut Matthias Maurer will return to the European Astronaut Centre in Cologne, Germany, where he will participate in post-flight debriefings, provide samples for scientific evaluation and readapt to Earth’s gravity with the support of ESA experts.
An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.
Week of May 6, 2022: The Crew Dragon spacecraft carrying NASA astronauts Raja Chari, Thomas Marshburn and Kayla Barron, plus European Space Agency (ESA) astronaut Matthias Maurer, home from the International Space Station splashed down off the coast of Florida, United States, on Friday, May 6, 2022.
NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
The Crew Dragon spacecraft carrying European Space Agency (ESA) astronaut Matthias Maurer and NASA astronauts Raja Chari, Thomas Marshburn and Kayla Barron home from the International Space Station splashed down off the coast of Florida, United States, on Friday, May 6, 2022 at 05:43 BST/06:43 CEST.
Its return marks the end of Crew-3’s almost six-month stay in orbit and the end of Matthias’s first mission, known as Cosmic Kiss.
Crew-3 undocked from the International Space Station in Crew Dragon spacecraft Endurance at 06:20 BST/07:20 CEST Thursday, May 5.
When a Crew spacecraft splashes down, it is met by nearby ships with experts ready to bring it on board, open the hatch, and welcome the astronauts home. After initial medical checks, the crew is transported by helicopter to shore.
Now that his mission has come to an end, Matthias will return to ESA’s European Astronaut Centre in Cologne, Germany, where he will participate in post-flight debriefings, provide samples for scientific evaluation and readapt to Earth’s gravity with the support of ESA experts.
European Robotic Arm Installed by Russian Cosmonauts | International Space Station
From top to bottom, the Nauka multipurpose laboratory module, the Prichal docking module, and the Soyuz MS-21 crew ship are pictured attached to the Russian segment of the International Space Station. Visible at upper left, is the new European robotic arm attached to Nauka.
The European Robotic Arm (ERA) successfully made its first moves in orbit during the 250th spacewalk to upgrade the International Space Station (ISS).
Two spacewalkers worked outside the orbiting lab for 7 hours and 42 minutes on April 28, 2022. Russian cosmonauts Oleg Artemyev and Denis Matveev removed thermal blankets and then unlocked the robotic arm.
The duo released the launch locks that held the arm in its folded configuration for the journey to space last year. Inside the International Space Station, crewmate Sergey Korsakov monitored the first commanded movements of the robotic arm.
One of the robotic arm’s end effectors moved for the first time shortly after 20:00 CEST (18:00 GMT). The European Robotic Arm translated to another base point in a “walkoff” maneuver.
The robotic arm brings new ways of operating automated machines to the orbital complex. ERA has the ability to perform many tasks automatically or semi-automatically, can be directed either from inside or outside the ISS, and it can be controlled in real time or preprogrammed.
The International Space Station already has two robotic arms—Canadian and Japanese robots play a crucial role in berthing spacecraft and transferring payloads and astronauts.
ERA is the first robot capable of ‘walking’ around the Russian parts of the orbital complex. It can handle components up to 8000kg with 5mm precision, and it will transport astronauts from one working site to another.
Additional spacewalks are planned to continue outfitting the European Robotic Arm.
An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.
Boeing CST-100 Starliner Spacecraft Arrival | Cape Canaveral Space Force Station
Boeing’s CST-100 Starliner spacecraft arrives at the Vertical Integration Facility at Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on May 4, 2022. The Starliner was secured atop a United Launch Alliance Atlas V rocket for Boeing’s second Orbital Flight Test (OFT-2) to the International Space Station for NASA’s Commercial Crew Program (CCP). The spacecraft rolled out from Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center earlier in the day.
Boeing's Starliner and SpaceX's Crew Dragon spacecraft have been developed and tested to fly astronauts to and from the International Space Station from U.S. soil.
NASA's Psyche Mission to an Asteroid: Launching in 2022
Join the journey as NASA’s Psyche mission team launches in 2022 to explore a unique metallic asteroid orbiting the sun between Mars and Jupiter. The asteroid, likely made largely of nickel-iron metal mixed with rock, could contain metal from the core of a planetesimal (the building block of an early rocky planet) and may offer a unique window into the violent history of collisions and accretion that created the terrestrial planets like Earth.
Arizona State University leads the Psyche mission. JPL, which is managed by Caltech for NASA, is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.
NASA’s SpaceX Crew-3: Mission for Science | International Space Station
After more than six months aboard the International Space Station, the astronauts of NASA’s SpaceX Crew-3 mission are returning home. The four crew members—NASA astronauts Kayla Barron, Raja Chari, and Tom Marshburn, and ESA (European Space Agency) astronaut Matthias Maurer—are traveling back to Earth inside a SpaceX Crew Dragon spacecraft. These crew members contributed to hundreds of scientific investigations and technology demonstrations while aboard the orbiting laboratory. This valuable research helps to prepare humans for future space exploration missions while generating numerous innovations and benefits for humanity on Earth.
NASA's SpaceX Crew-3 Undock from International Space Station
The Crew Dragon spacecraft Endurance, carrying European Space Agency (ESA) astronaut Matthias Maurer and NASA astronauts Raja Chari, Thomas Marshburn and Kayla Barron, undocked from the International Space Station (ISS) on Thursday, May 5, 2022. The autonomous undocking marked the start of Crew-3’s return to Earth after almost six months in orbit.
Crew-3’s return will take approximately 23.5 hours. Their spacecraft will splash down off the coast of Florida in the United States, where ships will be waiting to bring it aboard and welcome the astronauts home.
This return also marks the end of Matthias’s first space mission, Cosmic Kiss. During his time on ISS, Matthias supported over 35 European and many more international experiments in microgravity. He also supported International Space Station operations and maintenance and performed a spacewalk with NASA astronaut Raja Chari on March 23, 2022.
After initial medical checks, Crew-3 crew members will be transported by helicopter to shore where a plane will be waiting to bring Matthias back to ESA’s European Astronaut Centre in Cologne, Germany, for his post-flight debriefings and rehabilitation.
More info on Cosmic Kiss here: https://bit.ly/ESACosmicKiss
The return timeline with approximate times (all times Eastern):
Thursday, May 5
11:48 p.m. Trunk jettison
11:53 p.m. Deorbit burn
Friday, May 6
12:04 p.m. Nosecone closed
12:43 a.m. Dragon splashdown
NASA will continue to provide live coverage until Endurance splashes down off the coast of Florida and the Crew-3 astronauts are recovered off the coast of Florida. NASA TV: NASA.gov/NASATV
NASA’s SpaceX Crew-3 mission launched Nov. 10, 2021 on a Falcon 9 rocket from the agency’s Kennedy Space Center in Florida and docked to the International Space Station Nov. 11, 2021.
Change of Command Ceremony | International Space Station
Aboard the International Space Station, NASA astronaut Tom Marshburn handed over command of the International Space Station to Roscosmos cosmonaut Oleg Artemyev during a change of command ceremony May 4, 2022. Farewell remarks also took place ahead of Crew-3 undocking and splashdown following their six-month mission aboard the orbital outpost. Marshburn and Artemyev are in the midst of long duration missions living and working aboard the microgravity laboratory to advance scientific knowledge and demonstrate new technologies for future human and robotic exploration missions. Artemyev, a veteran of three spaceflights to the space station, will lead the Expedition 67 crew until the end of summer.
Marshburn and his Crew-3 crewmates Kayla Barron, Raja Chari, and ESA astronaut Matthias Maurer have been living aboard the orbital lab since November 11, 2021, and are set to depart tonight. Hatch closure is set for 11:20 p.m. EDT, with undocking following at 1:05 a.m. EDT. The commercial crew quartet is due to splashdown off the coast of Florida at 12:43 a.m. EDT on Friday, May 6. Watch live on NASA TV, the agency’s website, and the app.
The Crew-3 astronauts worked on final Dragon cargo operations and configuring Dragon for departure, final egress, and hatch closure, as well as transferring emergency hardware from Dragon to the space station prior to departure. The Endurance crew closed out research operations which included transferring and packing frozen samples and ice bricks from the Minus Eighty (Degrees Celsius) Laboratory Freezer for ISS (MELFI) into coldbags in preparation for the return to Earth. MELFI provides the space station storage and fast-freezing of life science and biological samples. The Crew-3 astronauts also removed and stowed their Actiwatches, small, lightweight, wrist-worn devices that simultaneously detect body movement and light intensity. They are used to evaluate sleep-wake adaptation and circadian cycle and determine if space travel has an impact on the sleep-wake patterns of crewmembers.
The station’s four newest astronauts, Kjell Lindgren, Bob Hines, Jessica Watkins, and Samantha Cristoforetti, had a light duty day performing some life science, lab maintenance, and inventory tasks. The foursome and their three Russian crewmates are due to have an off-duty day following the departure of the SpaceX Crew-3 mission.
Boeing CST-100 Starliner Spacecraft Rides to Atlas V Rocket | NASA Kennedy
NASA will soon have two spacecraft and rocket options to launch crews to the International Space Station.
Boeing’s CST-100 Starliner spacecraft passes by the iconic Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on May 4, 2022, making its way to the Space Launch Complex-41 Vertical Integration Facility at Cape Canaveral Space Force Station. At the pad, Starliner will be secured atop a United Launch Alliance (ULA) Atlas V rocket in preparation for Boeing’s second Orbital Flight Test (OFT-2) to the International Space Station for NASA’s Commercial Crew Program.
Set to launch May 19, Starliner will spend five to 10 days docked to the International Space Station before returning to land. The test is the last flight before the Starliner system launches American astronauts on the Crew Flight Test (CFT) to the microgravity laboratory—the spacecraft’s first flight test with crew on board. Potential launch windows for CFT are under review and will be determined after a safe and successful OFT-2.
Boeing's Starliner and SpaceX's Crew Dragon spacecraft have been developed and tested to fly astronauts to and from the International Space Station from U.S. soil.
Learn more about NASA’s Commercial Crew Program at:
Mission Minerva Meets Cosmic Kiss | Samantha & Matthias in Orbit
For the first time since mid 2011, the European Space Agency (ESA) has two astronauts living and working together aboard the International Space Station (ISS). Watch a conversation between Samantha Cristoforetti and Matthias Maurer in this rare moment for Europe in space.
The astronauts’ meeting marks a brief crossover between the start of Samantha’s second space mission, Minerva, and Matthias’s final days in orbit for his first mission, Cosmic Kiss.
Samantha arrived with Crew-4 on April 28, 2022, on SpaceX Crew Dragon Freedom, while Matthias will depart with Crew-3 in SpaceX Crew Dragon Endurance in May after almost six months on the International Space Station.
In this video Matthias is impressed by Samantha’s floating ability and says it is like she never left. Samantha confirms weightless was the thing she missed the most on Earth and talks about the differences on the Station since her Italian Space Agency ASI-sponsored Futura mission in 2014-15.
Matthias is pleased with what he has achieved in his time on ISS, including the science he has supported and the spacewalk he performed. He wishes Samantha all the best for her mission as she wishes him a safe return to Earth.
NASA's Artemis Program: Lockheed Martin's Vision for Lunar Mobility with GM
Only 5% of the Moon’s surface has been explored by the human race and to reach the other 95%, NASA astronauts on the Artemis program are going to need some serious wheels. This is why Lockheed Martin and General Motors have teamed up to design the next generation of lunar rovers, capable of transporting astronauts across farther distances on the lunar surface. Unlike the Apollo days when the rovers only traveled four miles from the landing site, Artemis astronauts will go farther and explore more of the Moon’s surface than ever before to conduct critical scientific research.
This type of mobility is a huge step—or a giant leap—toward enabling and sustaining long-term exploration of the lunar surface. The science that Artemis astronauts will conduct will help NASA better understand the fundamental planetary processes underlying our solar system, and will help us better understand and protect Earth.
Not only will these vehicles be well-equipped to go the distance, they will also be driver optional. Autonomous, self-driving systems would enable the vehicle to operate with or without humans onboard, and pave the way for future human missions, commercial payload services and enhanced scientific utility.
“These next-generation rover concepts will dramatically extend the exploration range of astronauts as they perform high-priority science investigation on the Moon that will ultimately impact humanity’s understanding of our place in the solar system,” said Rick Ambrose, executive vice president, Lockheed Martin Space.
A Lockheed Martin-GM rover would be able to preposition itself autonomously near a landing site prior to the astronauts’ arrival, and astronauts would have the ability to task the rover from the Human Landing System or the orbiting lunar Gateway to conduct science operations without a driver. This enables NASA to fit more science into a smaller amount of time, and allows us to uncover the critical information that the other 95% of the lunar surface may hold.
Zooming on the Moon
Driving on the Moon is not your average off-roading experience. The new lunar rover concept would be expertly outfitted to drive over rugged terrain in the dark and cold.
Unlike Earth and even Mars, days and nights on the Moon are just under 14 days long. The Lockheed Martin-GM rovers would be designed to survive and even operate in the two-week long night that sees temperatures of down to -280 degrees Fahrenheit, and day-time temperatures of 260 Fahrenheit.
“The biggest difference is, when you design for the Moon and for space applications, the force of gravity is different and has to be taken into account,” said Madhu Raghavan, Global Research & Development Group Manager at GM. “There are extreme temperature swings, and the radiation in space becomes a challenge in terms of systems design. You’re also operating in a vacuum and designing your systems to withstand the shock of the actual launch.”
The vehicles’ design would expertly mitigate these challenges. Lockheed Martin has built multiple deep space robotic spacecraft that have gone to the Moon, Mars, Jupiter, Venus, asteroids, comets and other destinations throughout the solar system.
“We’ve led missions to other planetary bodies for decades, building spacecraft that can survive the high radiation environment, cold temperatures, and yet be very light and very reliable,” said Kirk Shireman, vice president, Lunar Exploration Campaigns at Lockheed Martin. “This is what we specialize in, and we are more than capable of meeting and exceeding this challenge for NASA.”
A Dynamic Duo
With both brains and brawn, the Lockheed Martin-GM alliance brings together innovations from both companies to make transformative vehicles, drawing on strong legacies of engineering and performance from both companies.
“GM is a world leader in automobile manufacturing and technology, and Lockheed Martin is a world leader in spacecraft. The two companies joining forces to build a mobility system on the Moon just makes perfect sense.”
Lockheed Martin will lead the team by leveraging its legacy and history working with NASA.
“Our goal is to build a vehicle that is affordable, that exceeds our customer requirements, and to do it rapidly. Digital tools are how we achieve that,” Shireman said. “We’ve demonstrated already across programs and proposals the speed, affordability and reliability that digital tools enable, and we fully expect to leverage and expand on that experience with this program.”
GM brings to the table decades of experience designing for on and off-road environments, a strong focus on quality and human safety, and a shared mission.
“There’s a lot of synergy between our two companies—we complement each other well,” said Jeff Ryder, vice president, Growth & Strategy at GM Defense. “The lunar rover designs for extreme off-road environments have a lot of similarities with our tactical military vehicles on the GM Defense side. It’s great to work with a company like Lockheed Martin who has a shared mission of supporting the warfighter.”
GM brings to the table state-of-the-art battery-electric technologies and propulsion systems that are central to the company’s extensive electric vehicle strategy. Research from the development of battery and power systems for the lunar rover may ultimately spur advances on electric vehicles back on Earth, too.
“Because the operating conditions are so extreme in space, our work on this project will help us make safer and better batteries back on Earth,” Raghavan said. “The Moon and Mars are, of course, totally unstructured, unlined roads. Designing for that environment will ultimately just make our EV capabilities on Earth that much stronger.”
Enabling a Celestial Human Future
As it was during the Apollo era, every minute of the Artemis astronauts’ time on the lunar surface will be carefully planned in order to maximize the science value of having humans back on the lunar surface for the first time since 1972.
So, what is NASA hoping to uncover on the uncharted territory that remains of the Moon? The Moon is often referred to as the cornerstone of the solar system. Scientific investigations on the Artemis program will help NASA understand the risks and potential resources of the Moon’s South Pole, where they hope to establish the Artemis Base Camp concept by the end of the decade.
“The technology has evolved so much in the last 50 years, to the point where we can now use autonomy for these vehicles to aid in the astronauts’ missions,” Shireman said. “Autonomy will enable these rovers to carry tools and samples, and allows the crews to do more in the time they have there on the surface.”
To achieve our ultimate goal of utilizing the resources on the Moon to sustain a human presence, Shireman says we’ll need to have a reliable way of transporting those resources. This is the first major step in that direction.
“I’ve worked on many space programs in the past, but this isn’t just another space mission,” said Ryder. “It’s the return to, and permanent habitation of the Moon. It’s not just cool or interesting –it’s historical. It’s a major milestone in human activity in space.”
According to Raghavan, he’s seen a major influx of job applicants for open positions on his project team. “This is the stuff you dream about as a kid in science class,” he said. “People want to be part of this.”
Other scientific activities that surface mobility could enable include field geology, sample collection and return, and deployed experiments. These investigations are conducted in the hopes that they may increase our understanding of how the Moon formed and evolved, how it interacts with the Sun, and how water and other resources arrived at the Moon, and how they are transported and preserved.
These are all questions that, once answered, will help us sustain life on the Moon. The Lockheed Martin-GM team stands ready to autonomously chauffeur the astronauts to the dark regions of the Moon to advance our human future in space.
“I always think about alliances, and how you have to start with something real,” Ryder said. “As we go do this, it’ll likely lead to additional opportunities. It’s a great pathway going forward, and I’m sure there will be more opportunities for our two companies to come together to further human spaceflight.”