Wednesday, July 13, 2022

Science on SpaceX CRS-25 Cargo Resupply Mission | International Space Station

Science on SpaceX CRS-25 Cargo Resupply Mission | International Space Station

The 25th SpaceX cargo resupply services mission (SpaceX CRS-25) carrying scientific research and technology demonstrations to the International Space Station is scheduled for launch on July 14, 2022, from NASA’s Kennedy Space Center in Florida. Experiments aboard the Dragon capsule include studies of the immune system, Earth’s oceans, soil communities, and cell-free biomarkers, along with mapping the composition of Earth’s dust and testing an alternative to concrete. 

More info: https://go.nasa.gov/3PENKTO


Credit: National Aeronautics and Space Administration (NASA)

Duration: 2 minutes

Release Date: July 13, 2022


#NASA #Space #ISS #SpaceX #Dragon #Spacecraft #Cargo #CommercialResupply #CRS25 #Astronauts #LaunchAmerica #Laboratory #Research #Science #Technology #HumanSpaceflight #Europe #Russia #Japan #Canada #Expedition67 #UnitedStates #STEM #Education #HD #Video

A History of Space Telescopes | Lockheed Martin

A History of Space Telescopes | Lockheed Martin

NASA's James Webb Space Telescope (JWST) is the largest, most powerful space telescope ever built, and it will reveal what our universe looked like some 13.5 billion years ago. It just released its first science images, many of which were taken by NIRCam—the most precise and sensitive infrared camera ever built by Lockheed Martin.

Lockheed Martin has a long history of designing and building telescopes, from Hubble, to Spitzer and JWST.


Credit: Lockheed Martin

Duration: 1 minute, 29 seconds

Release Date: July 13, 2022


#NASA #ESA #Astronomy #Space #LockheedMartin #Hubble #Spitzer #Nebulae #Stars #Exoplanets #Galaxies #DeepField #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #History #STEM #Education #HD #Video

SpaceX CRS-25 Falcon 9 Rocket Readied for Launch | NASA’s Kennedy Space Center

SpaceX CRS-25 Falcon 9 Rocket Readied for Launch | NASA’s Kennedy Space Center


A SpaceX Falcon 9 rocket, with the company’s Cargo Dragon spacecraft atop, is raised to a vertical position at NASA Kennedy Space Center’s Launch Complex 39A on July 12, 2022, in preparation for the 25th commercial resupply services launch to the International Space Station. The mission will deliver new science investigations, supplies, and equipment to the crew aboard the orbiting laboratory. Liftoff is scheduled for 8:44 p.m. EDT on Thursday, July 14, from Kennedy’s Launch Complex 39A. 

Learn More about the science aboard SpaceX CRS-25: 

https://go.nasa.gov/3PENKTO

NASA's Commercial Crew and Cargo Program:

https://www.nasa.gov/offices/c3po/home/


Expedition 67 Crew

Commander Oleg Artemyev (Russia)

Roscosmos Flight Engineers: Denis Matveev and Sergey Korsakov (Russia)

NASA Flight Engineers: Kjell Lindgren, Bob Hines, Jessica Watkins (USA)

European Space Agency (ESA) Flight Engineer: Samantha Cristoforetti (Italy)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.


Image Credit: SpaceX

Image Date: July 12, 2022


#NASA #Space #ISS #SpaceX #Dragon #Spacecraft #Cargo #CommercialResupply #CRS25 #Astronauts #LaunchAmerica #Laboratory #Research #Science #Technology #HumanSpaceflight #Europe #Russia #Japan #Canada #Expedition67 #KSC #Spaceport #Florida #UnitedStates #STEM #Education

Highlights: First Images of the James Webb Space Telescope | NASA

Highlights: First Images of the James Webb Space Telescope | NASA

NASA revealed the first five full-color images and spectrographic data from the world's most powerful space telescope, the James Webb Space Telescope, a partnership with European Space Agency (ESA), and Canadian Space Agency (CSA). The world got its first look at the full capabilities of the mission at a live event streamed from the agency's Goddard Space Flight Center in Greenbelt, Maryland, on July 12, 2022.

The event showcased these targets:

- Carina Nebula: A landscape speckled with glittering stars and cosmic cliffs

- Stephan’s Quintet: An enormous mosaic with a visual grouping of five galaxies

- Southern Ring Nebula: A nebula with rings of gas and dust for thousands of years in all directions

- WASP 96-b: A distinct signature of water in the atmosphere of an exoplanet orbiting a distant Sun-like star

- SMACS 0723: The deepest and sharpest infrared image of the distant universe to date

All about Webb: https://webb.nasa.gov

Credit: National Aeronautics and Space Administration (NASA)

Duration: 3 minutes

Release Date: July 13, 2022


#NASA #ESA #Astronomy #Space #CarinaNebula #SouthernRingNebula #StephansQuintet #Galaxies #DeepField #Stars #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #STEM #Education #HD #Video

Expedition 67 Crew at Work | International Space Station

Expedition 67 Crew at Work | International Space Station

Expedition 67 Flight Engineers check thermal system components

Expedition 67 Flight Engineers Samantha Cristoforetti of ESA (European Space Agency), and Bob Hines and Jessica Watkins, both from NASA, check thermal system components inside the International Space Station's Unity module.

Image Date: July 7, 2022

Expedition 67 Flight Engineer and ESA (European Space Agency) astronaut Samantha Cristoforetti participates in the Acoustic Diagnostics study. The investigation explores whether equipment noise levels and the microgravity environment may create possible adverse effects on astronaut hearing. The acoustic data will help researchers understand the International Space Station’s sound environment and may inform countermeasures to protect crew hearing.

Image Date: July 8, 2022

Expedition 67 Flight Engineer and NASA astronaut Kjell Lindgren participates in the Acoustic Diagnostics study. 

Image Date: July 8, 2022

Astronaut Bob Hines monitors an Astrobee robotic free-flyer

NASA astronaut and Expedition 67 Flight Engineer Bob Hines monitors an Astrobee robotic free-flyer as it tests its ability to autonomously navigate and maneuver inside the Kibo laboratory module using smartphone technology.

Image Date: June 24, 2022

Astronaut Jessica Watkins services combustion experiment components

Expedition 67 Flight Engineer and NASA astronaut Jessica Watkins services components that support the Solid Fuel Ignition and Extinction (SOFIE) fire safety experiment inside the International Space Station's Combustion Integrated Rack.

Image Date: June 24, 2022

Astronaut Samantha Cristoforetti poses with food packets

Expedition 67 Flight Engineer and ESA astronaut (European Space Agency) Samantha Cristoforetti poses with food packets flying weightlessly inside the International Space Station's Unity module.

Image Date: July 2, 2022

Astronaut Bob Hines poses inside BEAM

Expedition 67 Flight Engineer and NASA astronaut Bob Hines poses inside the Bigelow Expandable Activity Module (BEAM) packed with cargo and attached to the International Space Station's Tranquility module.

Image Date: June 10, 2022

Astronaut Jessica Watkins replaces components on a life support device

Expedition 67 Flight Engineer and NASA astronaut Jessica Watkins replaces components on the Major Constituents Analyzer, a life support device in the U.S. Destiny laboratory module, that ensures oxygen and carbon dioxide levels remain safe aboard the International Space Station.

Image Date: July 12, 2022


Expedition 67 Crew
Commander Oleg Artemyev (Russia)
Roscosmos Flight Engineers: Denis Matveev and Sergey Korsakov (Russia)
NASA Flight Engineers: Kjell Lindgren, Bob Hines, Jessica Watkins (USA)
European Space Agency (ESA) Flight Engineer: Samantha Cristoforetti (Italy)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Credit: NASA's Johnson Space Center (JSC)

Image Dates: June 10-July 12, 2022


#NASA #Space #ISS #Earth #FlightEngineers #Astronauts #KjellLindgren #SamanthaCristoforetta #MissionMinerva #JessicaWatkins #BobHines #Science #Technology #Research #Laboratory #HumanSpaceflight #Expedition67 #Europe #Italy #Italia #JSC #UnitedStates #International #STEM #Education

Vega-C Rocket Liftoff | European Space Agency

Vega-C Rocket Liftoff | European Space Agency

The European Space Agency's new Vega-C rocket lifted off for its inaugural flight VV21 at 15:13 CEST/13:13 UTC/10:13 local time from Europe’s Spaceport in French Guiana. With new first and second stages and an uprated fourth stage, Vega-C increases performance to about 2.3 t in a reference 700 km polar orbit, from the 1.5 t capability of its predecessor, Vega. For flight VV21, Vega-C’s payload is LARES-2, a scientific mission of the Italian space agency ASI and six research CubeSats from France, Italy and Slovenia.


Credits: ESA-CNES-Arianespace/Optique video du CSG - S Martin

Image Date: July 13, 2022


#ESA #Space #Earth #Satellite #Vega #VegaC #Rocket #VV21 #Lares2 #ASI #Italy #Italia #Physics #Lasers #CubeSats #CommercialSpace #Kourou #Spaceport #FrenchGuiana #SouthAmerica #Europe #STEM #Education

Vega-C Rocket VV21 with LARES-2: Ready for Launch | European Space Agency

Vega-C Rocket VV21 with LARES-2: Ready for Launch | European Space Agency




Vega-C VV21 with LARES-2 ready for launch as the gantry is being retracted on July 13, 2022, at Europe's Spaceport in Kourou, French Guiana. Vega-C brings a new level of performance to ESA's launch family. With new first and second stages and an uprated fourth stage, Vega-C increases performance to about 2.3 t in a reference 700 km polar orbit, from the 1.5 t capability of its predecessor, Vega.

Vega-C features a new, more powerful first stage, P120C, based on Vega’s P80. Atop that is a new second stage, Zefiro-40, and then the same Zefiro-9 third stage as used on Vega.

The re-ignitable upper stage is also improved. AVUM+ has increased liquid propellant capacity, to deliver payloads to multiple orbits depending on mission requirements and to allow for longer operational time in space, to enable extended missions.

The P120C motor will do double service, with either two or four units acting as strap-on boosters for Ariane 6. Sharing this component streamlines industrial efficiency and improves cost-effectiveness of both launchers.

With its larger main stages and bigger fairing – which doubles the payload volume compared to Vega – Vega-C measures 34.8 m high, nearly 5 meters taller than Vega.

The new launcher configuration delivers a significant improvement in launch system flexibility. Vega-C can orbit larger satellites, two main payloads or can accommodate various arrangements for rideshare missions. ESA’s upcoming Space Rider return-to-Earth vehicle will be launched to orbit on Vega-C.


Credit: European Space Agency (ESA)

Image Date: July 13, 2022


#ESA #Space #Earth #Satellite #Vega #VegaC #Rocket #VV21 #Lares2 #ASI #Italy #Italia #Physics #Lasers #CubeSats #CommercialSpace #Kourou #Spaceport #FrenchGuiana #SouthAmerica #Europe #STEM #Education

Electron Launches “Wise One Looks Ahead” NROL-162 Mission | Rocket Lab

Electron Launches “Wise One Looks Ahead” NROL-162 Mission | Rocket Lab

Rocket Lab’s Electron rocket launched the “Wise One Looks Ahead” mission for the U.S. National Reconnaissance Office (NROL-162) from Launch Complex 1, Pad A, on Mahia Peninsula, New Zealand, on July 13, 2022, at 06:30 UTC (18:30 NZST, 02:30 EDT). This mission is Rocket Lab’s 28th Electron launch to date. The National Reconnaissance Office (NRO) develops, builds, launches, and operates space reconnaissance systems and conducts intelligence-related activities for U.S. national security.


Credit: Rocket Lab

Duration: 1 minute, 45 seconds

Release Date: July 13, 2022


#NASA #Space #Satellite #RocketLab #PeterBeck #Rocket #Electron #NRO #NROL162 #Reconnaissance #Intelligence #EarthObservation #RemoteSensing #Military #DOD #Technology #Engineering #UnitedStates #Australia #MahiaPeninsula #NewZealand #STEM #Education #HD #Video

City lights of Italy | International Space Station

City Lights of Italy | International Space Station

The city lights of Italy, including the French island of Corse and Italian islands of Sardinia and Sicily, are pictured from the International Space Station from 261 miles above the Mediterranean Sea while flying into an orbital sunrise. In the top foreground, is a portion of the Candarm2 robotic arm.

Expedition 67 Crew

Commander Oleg Artemyev (Russia)

Roscosmos Flight Engineers: Denis Matveev and Sergey Korsakov (Russia)

NASA Flight Engineers: Kjell Lindgren, Bob Hines, Jessica Watkins (USA)

European Space Agency (ESA) Flight Engineer: Samantha Cristoforetti (Italy)


An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.


Credit: NASA's Johnson Space Center

Image Date: July 4, 2022


#NASA #Space #ISS #Earth #ESA #MediterraneanSea #Mediterranean #Italy #Italia #Sardinia #Sicily #France #Corse #Corsica #Science #Technology #HumanSpaceflight #Expedition67 #CNES #Europe #JSC #UnitedStates #Candarm2 #Robotics #CSA #Canada #International #STEM #Education

Tuesday, July 12, 2022

"STRAIGHT UP!"—A Virgin Orbit Launch Film

"STRAIGHT UP!"—A Virgin Orbit Launch Film

On July 1, 2022, Virgin Orbit completed their fourth consecutive satellite launch mission, named "Straight Up." This launch carried seven satellites to Low Earth Orbit for the United States Space Force (USSF), who procured this launch for the Rocket Systems Launch Program, with payloads provided by the Department of Defense Space Test Program (STP).

 Virgin Orbit’s fully mobile LauncherOne system conducted its first ever evening flight from a bare concrete pad and a runway at the Mojave Air and Space Port in California. The launch began at 10:50 p.m. local time, Friday, July 1, and concluded with the successful deployment of all seven payloads at approximately 12:55 a.m. Pacific on the morning of July 2, completing the company’s first nighttime demonstration of the company’s responsive space launch capabilities.

 The launch’s name, Straight Up, is inspired by American singer Paula Abdul’s breakthrough song from her debut studio album, Forever Your Girl. Released through Virgin Records on June 21,1988, it was the most successful debut album ever at the time of its release. The iconic dance-pop tune has remained Abdul’s biggest international hit to date.


Credit: Virgin Orbit

Duration: 2 minutes, 39 seconds

Release Date: July 12, 2022


#NASA #Space #Earth #Satellite #LEO #Orbit #Military #DOD #USSF #VirginOrbit #CommercialSpace #LauncherOne #Mojave #Spaceport #NewMexico #UnitedStates #RichardBranson #UK #STEM #Education #HD #Video

SpaceX CRS-25 Falcon 9 Rocket Rollout | NASA’s Kennedy Space Center

SpaceX CRS-25 Falcon 9 Rocket Rollout | NASA’s Kennedy Space Center



A SpaceX Falcon 9 rocket, topped with the Cargo Dragon spacecraft, is rolled out from the company’s hangar at NASA’s Kennedy Space Center in Florida on July 12, 2022, to the launch pad in preparation for the 25th commercial resupply services launch. The mission will deliver new science investigations, supplies, and equipment to the crew aboard the International Space Station. Liftoff is scheduled for 8:44 p.m. EDT on Thursday, July 14, from Kennedy’s Launch Complex 39A. 

Learn More about the science aboard SpaceX CRS-25: https://go.nasa.gov/3PENKTO

NASA's Commercial Crew and Cargo Program:

https://www.nasa.gov/offices/c3po/home/


Expedition 67 Crew

Commander Oleg Artemyev (Russia)

Roscosmos Flight Engineers: Denis Matveev and Sergey Korsakov (Russia)

NASA Flight Engineers: Kjell Lindgren, Bob Hines, Jessica Watkins (USA)

European Space Agency (ESA) Flight Engineer: Samantha Cristoforetti (Italy)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.


Image Credit: SpaceX

Image Date: July 12, 2022


#NASA #Space #ISS #SpaceX #Dragon #Spacecraft #Cargo #CommercialResupply #CRS25 #Astronauts #LaunchAmerica #Laboratory #Research #Science #Technology #HumanSpaceflight #Europe #Russia #Japan #Canada #Expedition67 #KSC #Spaceport #Florida #UnitedStates #STEM #Education

Watch "First Images: The James Webb Space Telescope" (NASA Broadcast) [Replay]

Watch "First Images: The James Webb Space Telescope" (NASA Broadcast) [Replay]

Watch as the mission team reveals the long-awaited first images from the James Webb Space Telescope. Webb, an international collaboration led by NASA with our partners the European Space Agency and the Canadian Space Agency, is the biggest telescope ever launched into space. It will unlock mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

All about Webb: https://webb.nasa.gov

Credit: NASA TV

Duration: 54 minutes

Release Date: July 12, 2022


#NASA #ESA #Astronomy #Space #CarinaNebula #SouthernRingNebula #StephansQuintet #Galaxies #DeepField #Stars #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #STEM #Education #HD #Video

First Images: The Highlights | James Webb Space Telescope

First Images: The Highlights | James Webb Space Telescope

The dawn of a new era in astronomy has begun as the world gets its first look at the full capabilities of the NASA/ESA/CSA James Webb Space Telescope. The telescope’s first full-color images and spectroscopic data, which uncover a spectacular collection of cosmic features that have remained elusive until now, were released on 12 July 2022.

This montage shows a few of the highlights:

Top left: the Southern Ring planetary nebula in near- and mid-infrared, the product of a dying star. Read more about this object

Top right: star formation in the Carina Nebula. Read more about this object

Bottom left: Stephan’s Quintet, an interacting galaxy group. Read more about this object

Bottom right: Webb’s first deep field. Read more about this object


Credit: NASA, ESA, CSA, and STScI

Release Date: July 12, 2022


#NASA #ESA #Astronomy #Space #CarinaNebula #SouthernRingNebula #StephansQuintet #Galaxies #DeepField #Stars #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #STEM #Education

Spectra Identify Galaxies in Very Early Universe | James Webb Space Telescope

Spectra Identify Galaxies in Very Early Universe | James Webb Space Telescope

The NASA/ESA/CSA Webb Telescope has yet another discovery machine aboard—the Near-Infrared Spectrograph’s (NIRSpec’s) microshutter array. This instrument has more than 248,000 tiny doors that can be individually opened to gather spectra (light) of up to approximately 150 individual objects simultaneously.

Of the thousands of distant galaxies behind galaxy cluster SMACS 0723, NIRSpec observed 48 individually—all at the same time—in a field that is approximately the size of a grain of sand held at arm’s length. Quick analysis made it immediately clear that several of these galaxies were observed as they existed at very early periods in the history of the universe, which is estimated to be 13.8 billion years old.

Look for the same feature highlighted in each spectrum. Three lines appear in the same order every time—one hydrogen line followed by two ionized oxygen lines. Where this pattern falls on each spectrum tells researchers the redshift of individual galaxies, revealing how long ago their light was emitted.

Light from the farthest galaxy shown traveled 13.1 billion years before Webb’s mirrors captured it. These observations mark the first time these particular emission lines have been seen at such immense distances—and these are only Webb’s initial observations. There may be even more distant galaxies in this image!

In these spectra, Webb has also shown us the chemical composition of galaxies in the very early Universe for the first time. This was made possible by the telescope’s position in space—far away from Earth’s atmosphere, which filters out some infrared light—and its specialization in gathering high-resolution near-infrared light.

And since similar spectra from galaxies at closer distances have long been studied by other space- and ground-based observatories, astronomers already know a lot about the properties of nearby galaxies. Now, astronomers will be able to study and compare spectra from Webb to determine how galaxies have changed over billions of years, dating back to the early Universe.

With Webb’s data, researchers can now measure each galaxy’s distance, temperature, gas density, and chemical composition. We will soon learn an incredible amount about galaxies that existed all across cosmic time!

NIRSpec was built for the European Space Agency (ESA) by a consortium of European companies led by Airbus Defence and Space (ADS) with NASA’s Goddard Space Flight Center providing its detector and micro-shutter subsystems.


Credit: NASA, ESA, CSA, and STScI

Release Date: July 12, 2022


#NASA #ESA #Astronomy #Space #Galaxies #DeepField #Spectra #NIRSpec #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #Infographic #STEM #Education

Southern Ring Nebula – Two Stars at Center Revealed | James Webb Space Telescope

Southern Ring Nebula – Two Stars at Center Revealed | James Webb Space Telescope

The NASA/ESA/CSA James Webb Telescope has revealed the cloak of dust around the second star, shown at left in red, at the center of the Southern Ring Nebula for the first time. It is a hot, dense white dwarf star.

As it transformed into a white dwarf, the star periodically ejected mass — the shells of material you see here. As if on repeat, it contracted, heated up, and then, unable to push out more material, pulsated.

At this stage, it should have shed its last layers. So why is the red star still cloaked in dust? Was material transferred from its companion? Researchers will begin to pursue answers soon.

The bluer star at right in this image has also shaped the scene. It helps stir up the ejected material. The disc around the stars is also wobbling, shooting out spirals of gas and dust over long periods of time. This scene is like witnessing a rotating sprinkler that’s finished shooting out material in all directions over thousands of years.

Webb captured this scene in mid-infrared light — most of which can only be observed from space. Mid-infrared light helps researchers detect objects enshrouded in dust, like the red star.

This Mid-Infrared Instrument (MIRI) image also offers an incredible amount of detail, including a cache of distant galaxies in the background. Most of the multi-coloured points of light are galaxies, not stars. Tiny triangles mark the circular edges of stars, including a blue one within the nebula’s red bottom-most edges, while galaxies look like misshapen circles, straight lines, and spirals.

MIRI was contributed by ESA and NASA, and the instrument was designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.


Credit: NASA/ESA/CSA/STScI

Release Date: July 12, 2022


#NASA #ESA #Astronomy #Space #Stars #SouthernRingNebula #NGC3132 #Nebula #NIRCam #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #Goddard #GSFC #STScI #STEM #Education

Webb Space Telescope Reveals Atmosphere of Distant Planet in Exquisite Detail

Webb Space Telescope Reveals Atmosphere of Distant Planet in Exquisite Detail

Webb’s enormous mirror and precision instrumentation join forces to capture the most detailed spectrum of an exoplanet atmosphere to date

In a dream come true for exoplaneteers, NASA’s James Webb Space Telescope has demonstrated its unprecedented ability to analyze the atmosphere of a planet more than 1,000 light-years away. With the combined forces of its 270-square-foot mirror, precision spectrographs, and sensitive detectors, Webb has – in a single observation – revealed the unambiguous signature of water, indications of haze, and evidence for clouds that were thought not to exist based on prior observations. The transmission spectrum of the hot gas giant WASP-96 b, made using Webb’s Near-Infrared Imager and Slitless Spectrograph, provides just a glimpse into the brilliant future of exoplanet research with Webb.

NASA’s James Webb Space Telescope has captured the distinct signature of water, along with evidence for clouds and haze, in the atmosphere surrounding a hot, puffy gas giant planet orbiting a distant Sun-like star.

The observation, which reveals the presence of specific gas molecules based on tiny decreases in the brightness of precise colors of light, is the most detailed of its kind to date, demonstrating Webb’s unprecedented ability to analyze atmospheres hundreds of light-years away.

While the Hubble Space Telescope has analyzed numerous exoplanet atmospheres over the past two decades, capturing the first clear detection of water in 2013, Webb’s immediate and more detailed observation marks a giant leap forward in the quest to characterize potentially habitable planets beyond Earth. 

WASP-96 b is one of more than 5,000 confirmed exoplanets in the Milky Way. Located roughly 1,150 light-years away in the southern-sky constellation Phoenix, it represents a type of gas giant that has no direct analog in our solar system. With a mass less than half that of Jupiter and a diameter 1.2 times greater, WASP-96 b is much puffier than any planet orbiting our Sun. And with a temperature greater than 1000°F, it is significantly hotter. WASP-96 b orbits extremely close to its Sun-like star, just one-ninth of the distance between Mercury and the Sun, completing one circuit every 3½ Earth-days. 

The combination of large size, short orbital period, puffy atmosphere, and lack of contaminating light from objects nearby in the sky makes WASP-96 b an ideal target for atmospheric observations.

On June 21, Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) measured light from the WASP-96 system for 6.4 hours as the planet moved across the star. The result is a light curve showing the overall dimming of starlight during the transit, and a transmission spectrum revealing the brightness change of individual wavelengths of infrared light between 0.6 and 2.8 microns.  

While the light curve confirms properties of the planet that had already been determined from other observations – the existence, size, and orbit of the planet – the transmission spectrum reveals previously hidden details of the atmosphere: the unambiguous signature of water, indications of haze, and evidence of clouds that were thought not to exist based on prior observations. 

A transmission spectrum is made by comparing starlight filtered through a planet’s atmosphere as it moves across the star to the unfiltered starlight detected when the planet is beside the star. Researchers are able to detect and measure the abundances of key gases in a planet’s atmosphere based on the absorption pattern – the locations and heights of peaks on the graph. In the same way that people have distinctive fingerprints and DNA sequences, atoms and molecules have characteristic patterns of wavelengths that they absorb. 

The spectrum of WASP-96 b captured by NIRISS is not only the most detailed near-infrared transmission spectrum of an exoplanet atmosphere captured to date, but it also covers a remarkably wide range of wavelengths, including visible red light and a portion of the spectrum that has not previously been accessible from other telescopes (wavelengths longer than 1.6 microns). This part of the spectrum is particularly sensitive to water as well as other key molecules like oxygen, methane, and carbon dioxide, which are not immediately obvious in the WASP-96 b spectrum but which should be detectable in other exoplanets planned for observation by Webb.

Researchers will be able to use the spectrum to measure the amount of water vapor in the atmosphere, constrain the abundance of various elements like carbon and oxygen, and estimate the temperature of the atmosphere with depth. They can then use this information to make inferences about the overall make-up of the planet, as well as how, when, and where it formed. The blue line on the graph is a best-fit model that takes into account the data, the known properties of WASP-96 b and its star (e.g., size, mass, temperature), and assumed characteristics of the atmosphere.

The exceptional detail and clarity of these measurements is possible because of Webb’s state-of-the-art design. Its 270-square-foot gold-coated mirror collects infrared light efficiently. Its precision spectrographs spread light out into rainbows of thousands of infrared colors. And its sensitive infrared detectors measure extremely subtle differences in brightness. NIRISS is able to detect color differences of only about one thousandth of a micron (the difference between green and yellow is about 50 microns), and differences in the brightness between those colors of a few hundred parts per million. 

In addition, Webb’s extreme stability and its orbital location around Lagrange Point 2, roughly a million miles away from the contaminating effects of Earth’s atmosphere, makes for an uninterrupted view and clean data that can be analyzed relatively quickly. 

The extraordinarily detailed spectrum – made by simultaneously analyzing 280 individual spectra captured over the observation – provides just a hint of what Webb has in store for exoplanet research. Over the coming year, researchers will use spectroscopy to analyze the surfaces and atmospheres of several dozen exoplanets, from small rocky planets to gas- and ice-rich giants . Nearly one-quarter of Webb’s Cycle 1 observation time is allocated to studying exoplanets and the materials that form them. 

This NIRISS observation demonstrates that Webb has the power to characterize the atmospheres of exoplanets – including those of potentially habitable planets – in exquisite detail. 

The James Webb Space Telescope is the world's premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

NASA Headquarters oversees the mission for the agency’s Science Mission Directorate. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages Webb for the agency and oversees work on the mission performed by the Space Telescope Science Institute, Northrop Grumman, and other mission partners. In addition to Goddard, several NASA centers contributed to the project, including the agency’s Johnson Space Center in Houston, Jet Propulsion Laboratory in Southern California, Marshall Space Flight Center in Huntsville, Alabama, Ames Research Center in California’s Silicon Valley, and others.

NIRISS was contributed by the Canadian Space Agency. The instrument was designed and built by Honeywell in collaboration with the Université de Montréal and the National Research Council Canada.

For a full array of Webb’s first images and spectra, including downloadable files, please visit: https://webbtelescope.org/news/first-images


Credit: NASA/ESA/CSA/STScI

Release Date: July 12, 2022


#NASA #ESA #Astronomy #Space #Explanet #WASP96b #Planet #Atmosphere #NIRISS #Science #JamesWebb #WebbTelescope #JWST #Telescope #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #Goddard #GSFC #STScI #Infographics #STEM #Education