The Tarantula Nebula | James Webb Space Telescope
To the upper left of the cluster of young stars, and the top of the nebula’s cavity, an older star prominently displays NIRCam’s distinctive eight diffraction spikes, an artefact of the telescope’s structure. Following the top central spike of this star upward, it almost points to a distinctive bubble in the cloud. Young stars still surrounded by dusty material are blowing this bubble, beginning to carve out their own cavity. Astronomers used two of Webb’s spectrographs to take a closer look at this region and determine the chemical makeup of the star and its surrounding gas. This spectral information will tell astronomers about the age of the nebula and how many generations of star birth it has seen.
Farther from the core region of hot young stars, cooler gas takes on a rust color, telling astronomers that the nebula is rich with complex hydrocarbons. This dense gas is the material that will form future stars. As winds from the massive stars sweep away gas and dust, some of it will pile up and, with gravity’s help, form new stars.
Credit: NASA, European Space Agency (ESA), Canadian Space Agency (CSA) and Space Telescope Science Institute (STScI)
Release Date: September 6, 2022
#NASA #ESA #Astronomy #Space #Science #Nebula #TarantulaNebula #30Doradus #LargeMagellanicCloud #LMC #Dorado #Constellation #JamesWebb #SpaceTelescope #JWST #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #UnitedStates #STEM #Education