Tuesday, July 11, 2023

Pan of Serene Supernova Aftermath: Galaxy UGC 11860 | Hubble

Pan of Serene Supernova Aftermath: Galaxy UGC 11860 | Hubble

The spiral galaxy UGC 11860 seems to float serenely against a field of background galaxies in this image from the NASA/European Space Agency Hubble Space Telescope. UGC 11860 lies around 184 million light-years away in the constellation Pegasus, and its untroubled appearance is deceiving; this galaxy recently played host to an almost unimaginably energetic stellar explosion.


Credit: European Space Agency (ESA)/Hubble & NASA, A. Filippenko, J. D. Lyman  

Duration: 30 seconds

Release Date: July 11, 2023


#NASA #ESA #Astronomy #Space #Hubble #Galaxies #Galaxy #UGC11860 #SpiralGalaxy #Supernova #Pegasus #Constellation #Cosmos #Universe #HST #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education #HD #Video

Planet Mars Images: July 9-10, 2023 | NASA's Perseverance Rover | JPL

Planet Mars Images: July 9-10, 2023 | NASA's Perseverance Rover | JPL

Mars2020 - sol 654

Mars2020 - sol 848

Mars2020 - sol 847

Mars2020 - sol 846

Mars2020 - sol 843

Mars2020 - sol 847


Timekeeping on Mars
Sol (borrowed from the Latin word for sun) is a solar day on Mars; that is, a Mars-day. A sol is the apparent interval between two successive returns of the Sun to the same meridian (sundial time) as seen by an observer on Mars. It is one of several units for timekeeping on Mars.

A sol is slightly longer than an Earth day. It is approximately 24 hours, 39 minutes, 35 seconds long. A Martian year is approximately 668 sols, equivalent to approximately 687 Earth days or 1.88 Earth years.

NASA's Mars Curiosity and Perseverance rovers all counted the sol of touchdown as "Sol 0."

2+ Years on Mars (2021-2023)

Mission Name: Mars 2020

Rover Name: Perseverance

Main Job: Seek signs of ancient life and collect samples of rock and regolith (broken rock and soil) for possible return to Earth.

Mars Helicopter (Ingenuity)

Launch: July 30, 2020    

Landing: Feb. 18, 2021, Jezero Crater, Mars

For more information on NASA's Mars missions, visit: mars.nasa.gov


Image Credits: NASA/JPL-Caltech/Arizona State University/Malin Space Science Systems (MSSS)

Image Processing: Kevin M. Gill

Image Release Dates: July 9-July 10, 2023


#NASA #Space #Astronomy #Science #Mars #RedPlanet #Planet #Astrobiology #Geology #PerseveranceRover #Mars2020 #IngenuityHelicopter #JezeroCrater #Robotics #SpaceTechnology #SpaceEngineering #JPL #Caltech #ASU #MSSS #UnitedStates #MoonToMars #CitizenScience #KevinGill #STEM #Education

Recientemente: Lo que el telescopio Webb encontró en los inicios del universo | NASA

Recientemente: Lo que el telescopio Webb encontró en los inicios del universo NASA

Recientemente en la NASA, la versión en español de las cápsulas This Week at NASA, te informa semanalmente de lo que está sucediendo en la NASA. 

Para obtener más información sobre la ciencia de la NASA, suscríbete al boletín semanal: https://www.nasa.gov/suscribete 

Ciencia de la NASA: https://ciencia.nasa.gov/


Credit: National Aeronautics and Space Administration (NASA)

Duration: 2 minutes, 19 seconds

Original Broadcast Date: July 7, 2023 

Release Date: July 10, 2023


#NASA #ESA #Astronomy #Space #Science #NASAenespañol #español #Sun #ParkerSolarProbe #Mars #IngenuityHelicopter #Hubble #JWST #Stars #CEERSSurvey #Galaxies #Galaxy #CEERS1019 #BlackHoles #Universe #SpaceTelescope #GSFC #STScI #UnitedStates #CSA #Canada #Europe #STEM #Education #HD #Video

Monday, July 10, 2023

The Evolution of Supergiant Star Eta Carinae | Hubble

The Evolution of Supergiant Star Eta Carinae | Hubble

Hubblecast 122 Light: This Hubblecast explores the various observations the NASA/European Space Agency Hubble Space Telescope has made of the Eta Carinae in various wavelengths. Eta Carinae is located 7,500 light-years away in the constellation Carina. It is within the Carina Nebula, a giant star-forming region in the Carina–Sagittarius Arm of the Milky Way.


Credit: European Space Agency (ESA)

Duration: 1 minute, 22 seconds

Release Date: July 1, 2019


#NASA #ESA #Astronomy #Space #Science #Hubble #Stars #EtaCarinae #Nebulae #HomunculusNebula #ReflectionNebula #CarinaNebula #NGC3372 #Carina #Constellation #MilkyWayGalaxy #Universe #HST #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education #HD #Video

NASA's X-59 Supersonic Research Aircraft Prepared for Testing

NASA's X-59 Supersonic Research Aircraft Prepared for Testing

NASA’s X-59 was moved to Run Stall 5. Technicians check out the X-59 supersonic aircraft as it sits near the runway at Lockheed Martin Skunk Works in Palmdale, California.

NASA’s X-59 aircraft is parked near the runway at Lockheed Martin Skunk Works in Palmdale, California, on June 19, 2023. This is where the X-59 will be housed during ground and initial flight tests.

NASA's X-59 supersonic research aircraft parked inside the hangar with a head-on view

NASA’s X-59 research aircraft has moved from its construction site to the flight line—or the space between the hangar and the runway—at Lockheed Martin Skunk Works in Palmdale, California, on June 16, 2023. This milestone kicks off a series of ground tests to ensure the X-59 is safe and ready to fly.


The X-59 is designed to fly faster than Mach 1 while reducing the resulting sonic boom to a thump for people on the ground. NASA will evaluate this technology during flight tests as part of the agency’s Quesst mission, which helps enable commercial supersonic air travel over land.

For more information about NASA's quiet supersonic mission, visit:


Hablas español? Visita: https://ciencia.nasa.gov/el-x-59-se-asemeja-una-aeronave-real para aprender mas sobre la mision Quesst

X-59 Free Maker Bundle (STEM Education):

Image Credit: Lockheed Martin
Location: Lockheed Martin Skunk Works, Palmdale, California, USA
Release Date: July 6, 2023

#NASA #Aerospace #X59 #QuesstMission #FlightDemonstrator #SupersonicFlight #Sonicboom #QuietAviation #QuietSupersonicTechnology #LowBoom #Aviation #Science #Physics #Technology #Engineering #AviationResearch #AeronauticalResearch #FlightTests #LockheedMartin #SkunkWorks #Palmdale #California #UnitedStates #STEM #Education

Zooming in on Star Formation in the Southern Milky Way | ESO

Zooming in on Star Formation in the Southern Milky Way | ESO

This zoom sequence takes the viewer deep into the spectacular southern Milky Way in the constellation of Carina (The Keel). We see two regions where stars are forming, the very rich cluster NGC 3603 and its surroundings and the strange glowing gas clouds known as NGC 3576. The final detailed views come from images taken with the Wide Field Imager on the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile.

The star cluster NGC 3603 is located 20,000 light-years away in the Carina–Sagittarius spiral arm of the Milky Way galaxy. The collection of glowing gas clouds, known as NGC 3576, lies only about half as far from Earth.


Credit: European Southern Observatory (ESO)/G. Beccari/N. Risinger (skysurvey.org)

Duration: 50 seconds

Release Date: Sept. 1, 2014


#NASA #ESO #Astronomy #Space #Science #StellarNurseries #StarCluster #NGC3603 #Nebula #EmissionNebula #NGC3576 #Carina #Constellation #SouthernMilkyWay #MilkyWayGalaxy #Cosmos #Universe #Telescope #LaSillaObservatory #Chile #Europe #STEM #Education #HD #Video

A Close-up Look at Star Formation in the Southern Milky Way | ESO

A Close-up Look at Star Formation in the Southern Milky Way | ESO

This pan video gives a close-up view of a spectacular mosaic of images from the Wide Field Imager on the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile that shows two dramatic star formation regions in the southern Milky Way. The first is of these, on the left, is dominated by the star cluster NGC 3603, located 20,000 light-years away, in the Carina–Sagittarius spiral arm of the Milky Way galaxy. The second object, on the right, is a collection of glowing gas clouds known as NGC 3576 that lies only about half as far from Earth.


Credit: European Southern Observatory (ESO)/G. Beccari

Duration: 50 seconds

Release Date: Sept. 1, 2014


#NASA #ESO #Astronomy #Space #Science #StellarNurseries #StarCluster #NGC3603 #Nebula #EmissionNebula #NGC3576 #Carina #Constellation #SouthernMilkyWay #MilkyWayGalaxy #Cosmos #Universe #Telescope #LaSillaObservatory #Chile #Europe #STEM #Education #HD #Video

Star Formation in The Southern Milky Way | ESO

Star Formation in The Southern Milky Way | ESO

This mosaic of images from the Wide Field Imager on the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile shows two dramatic star formation regions in the southern Milky Way. The first of these, on the left, is dominated by the star cluster NGC 3603, located about 20,000 light-years away, in the Carina–Sagittarius spiral arm of the Milky Way galaxy. The second object, on the right, is a collection of glowing gas clouds known as NGC 3576 that lies only about half as far from Earth.


Credit: European Southern Observatory (ESO)/G. Beccari

Release Date: August 20, 2014


#NASA #ESO #Astronomy #Space #Science #StellarNurseries #StarCluster #NGC3603 #Nebula #EmissionNebula #NGC3576 #Carina #Constellation #SouthernMilkyWay #MilkyWayGalaxy #Cosmos #Universe #Telescope #LaSillaObservatory #Chile #Europe #STEM #Education

Eta Aquariids Meteor Shower in the Chilean Desert

Eta Aquariids Meteor Shower in the Chilean Desert

The Eta Aquariids meteor shower was captured in this stunning image by astrophotographer Petr Horálek. It was taken near San Pedro de Atacama, a Chilean town about 50 km away from the Chajnantor observatory site, where APEX and ALMA, astronomical facilities co-owned by the European Southern Observatory (ESO), are located. The Eta Aquariids meteors are caused by leftover debris from Halley’s comet and make up the bright, arrow-like darts of light in the photo.

The luminous object towards the bottom of the sky is Venus. Above it, arranged in a satisfying line, are several planets in conjunction. Directly above Venus is Jupiter, followed by the bright red Mars, and then Saturn. Conjunctions such as this are rare, often occurring decades apart. The planets also trace the zodiacal light, the faint glow stretching like a pillar, up towards the bright stellar-dense center of the Milky Way, our home galaxy.

Zodiacal light is often seen from dark sites like ESO observatories just after sunset, or before sunrise, and is the reflected sunlight from dust particles in the plane of the Solar System. The dust comes from asteroids, passing comets, and even from other inner Solar System planets, such as Mars. Here we see the zodiacal light paired with the red sunset over the mountains and volcanoes surrounding the Chajnantor site, a spectacular backdrop to this dreamy night sky.


Credit: European Southern Observatory (ESO)/P. Horalek

Release Date: July 4, 2022


#ESO #Space #Astronomy #Science #Earth #Planets #Venus #Jupiter #Mars #Saturn #Meteors #EtaAquariids #ZodiacalLight #SolarSystem #Astrophotography #PetrHorálek #Astrophotographer #ChajnantorObservatory #SanPedrodeAtacama #Chile #SouthAmerica #SolarSystem #MilkyWayGalaxy #STEM #Education

Red Giant Star U Camelopardalis Blows a Bubble | Hubble

Red Giant Star U Camelopardalis Blows a Bubble | Hubble

A bright star is surrounded by a tenuous shell of gas in this unusual image from the NASA/European Space Agency Hubble Space Telescope. U Camelopardalis, or U Cam for short, is a star nearing the end of its life. As it begins to run low on fuel, it is becoming unstable. Every few thousand years, it coughs out a nearly spherical shell of gas as a layer of helium around its core begins to fuse. The gas ejected in the star’s latest eruption is clearly visible in this picture as a faint bubble of gas surrounding the star.

U Cam is an example of a carbon star. This is a rare type of star whose atmosphere contains more carbon than oxygen. Due to its low surface gravity, typically as much as half of the total mass of a carbon star may be lost by way of powerful stellar winds.

Located in the constellation of Camelopardalis (The Giraffe), near the North Celestial Pole, U Cam itself is actually much smaller than it appears in Hubble’s picture. In fact, the star would easily fit within a single pixel at the center of the image. Its brightness, however, is enough to overwhelm the capability of Hubble’s Advanced Camera for Surveys making the star look much bigger than it really is.

The shell of gas, which is both much larger and much fainter than its parent star, is visible in intricate detail in Hubble’s portrait. While phenomena that occur at the ends of stars’ lives are often quite irregular and unstable, the shell of gas expelled from U Cam is almost perfectly spherical.

The image was produced with the High Resolution Channel of the Advanced Camera for Surveys.


Credit: European Space Agency (ESA)/Hubble, NASA and H. Olofsson (Onsala Space Observatory) 

Release Date: July 2, 2012


#NASA #ESA #Astronomy #Space #Science #Hubble #Stars #RedGiantStar #CarbonStar #UCamelopardalis #UCam #Camelopardalis #Constellation #MilkyWayGalaxy #Cosmos #Universe #HST #SpaceTelescope #Ultraviolet #GSFC #STScI #UnitedStates #Europe #STEM #Education

A Tour of Giant Star AG Carinae in Carina | Hubble

A Tour of Giant Star AG Carinae in Carina | Hubble

Space Sparks Episode 3: This video showcases AG Carinae—a star in the constellation Carina. It is classified as a luminous blue variable (LBV) and is one of the most luminous stars in the Milky Way. It shines with the brilliance of 1 million suns. AG Carinae is a few million years old and resides 20,000 light-years away. This giant star is waging a tug-of-war between gravity and radiation to avoid self-destruction. The star is surrounded by an expanding shell of gas and dust—a nebula—that is shaped by the powerful winds emanating from the star. The nebula is about five light-years wide, equal to the distance from here to our nearest star, Alpha Centauri.

AG Carinae is formally classified as a Luminous Blue Variable because it is hot (blue), very luminous, and variable. Such stars are quite rare because there are not many stars that are so massive. Luminous Blue Variable stars continuously lose mass in the final stages of their life, during which a significant amount of stellar material is ejected into the surrounding interstellar space, until enough mass has been lost that the star has reached a stable state. 

AG Carinae is surrounded by a spectacular nebula, formed by material ejected by the star during several of its past outbursts. The nebula is approximately 10,000 years old, and the observed velocity of the gas is approximately 70 kilometers per second. While this nebula looks like a ring, it is in fact a  hollow shell rich in gas and dust, the center of which has been cleared by the powerful stellar wind travelling at roughly 200 kilometers per second. The gas (composed mostly of ionised hydrogen and nitrogen) is visible to us in these images as a thick bright red ring, which appears doubled in places—possibly the result of several outbursts colliding into each other. The dust, here visible in blue, has formed in clumps, bubbles and filaments that are shaped by the stellar wind.

Scientists who observed the star and its surrounding nebula note that the ring is not perfectly spherical; it appears to have a bipolar symmetry, indicating that the mechanism producing the outburst may have been caused by the presence of a disc in the center, or that the star is not alone but might have a companion (known as a binary star). An alternative and simpler theory is that the star rotates very fast (as many massive stars have been found to do).

This video showcases the 31st anniversary image from the Hubble Space Telescope.


Credit: European Space Agency (ESA)

Directed by: Bethany Downer and Nico Bartmann

Editing: Nico Bartmann

Web and technical support: Enciso Systems

Written by: Bethany Downer

Footage and photos: NASA, ESA and STScI

Duration: 1 minute, 43 seconds

Release Date: April 23, 2021

#NASA #ESA #Hubble #Astronomy #Space #Science #Star #AGCarinae #AGCar #HD94910 #LBV #LuminousBlueVariable #Carina #Constellation #MilkyWayGalaxy #Cosmos #Universe #HST #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education

Flight to Maisie's Galaxy: 3D Time Travel | James Webb Space Telescope

Flight to Maisie's Galaxy: 3D Time Travel | James Webb Space Telescope

This 3D visualization portrays about 5,000 galaxies within a small portion of the CEERS (Cosmic Evolution Early Release Science) Survey, which gathered data from a region known as the Extended Groth Strip. As the camera flies away from our viewpoint, each second amounts to traveling 200 million light-years into the data set, and seeing 200 million years further into the past. The appearances of the galaxies change, reflecting the fact that more distant objects are seen at earlier times in the universe, when galaxies were less developed. The video ends at Maisie’s Galaxy, which formed only 390 million years after the big bang, or about 13.4 billion years ago.


Video Credits: Space Telescope Science Institute (STScI)

Visualization:

Frank Summers (STScI), Greg Bacon (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI)

Science:

Steve Finkelstein (UT Austin), Rebecca Larson (RIT), Micaela Bagley (UT Austin)

Duration: 1 minute, 16 seconds
Release Date: July 10, 2023


#NASA #ESA #Astronomy #Space #Science #JWST #CEERSSurvey #ExtendedGrothStrip #Galaxies #Galaxy #MaisiesGalaxy #Cosmos #Universe #SpaceTelescope #GSFC #STScI #UnitedStates #CSA #Canada #Europe #STEM #Education #3DVisualization #HD #Video

Giant Star AG Carinae in Carina | Hubble

Giant Star AG Carinae in Carina | Hubble

AG Carinae (AG Car) is a star in the constellation Carina. It is classified as a luminous blue variable (LBV) and is one of the most luminous stars in the Milky Way. It shines with the brilliance of 1 million suns. AG Carinae is a few million years old and resides 20,000 light-years away. This giant star is waging a tug-of-war between gravity and radiation to avoid self-destruction. The star is surrounded by an expanding shell of gas and dust—a nebula—that is shaped by the powerful winds emanating from the star. The nebula is about five light-years wide, equal to the distance from here to our nearest star, Alpha Centauri.

AG Carinae is formally classified as a Luminous Blue Variable because it is hot (blue), very luminous, and variable. Such stars are quite rare because there are not many stars that are so massive. Luminous Blue Variable stars continuously lose mass in the final stages of their life, during which a significant amount of stellar material is ejected into the surrounding interstellar space, until enough mass has been lost that the star has reached a stable state. 

AG Carinae is surrounded by a spectacular nebula, formed by material ejected by the star during several of its past outbursts. The nebula is approximately 10,000 years old, and the observed velocity of the gas is approximately 70 kilometers per second. While this nebula looks like a ring, it is in fact a  hollow shell rich in gas and dust, the center of which has been cleared by the powerful stellar wind travelling at roughly 200 kilometers per second. The gas (composed mostly of ionised hydrogen and nitrogen) is visible to us in these images as a thick bright red ring, which appears doubled in places—possibly the result of several outbursts colliding into each other. The dust, here visible in blue, has formed in clumps, bubbles and filaments that are shaped by the stellar wind.

Scientists who observed the star and its surrounding nebula note that the ring is not perfectly spherical; it appears to have a bipolar symmetry, indicating that the mechanism producing the outburst may have been caused by the presence of a disc in the center, or that the star is not alone but might have a companion (known as a binary star). An alternative and simpler theory is that the star rotates very fast (as many massive stars have been found to do).


Credit: European Space Agency (ESA)/Hubble and NASA, A. Nota, C. Britt

Release Date: Sept. 13, 2021


#NASA #ESA #Hubble #Astronomy #Space #Science #Star #AGCarinae #AGCar #HD94910 #LBV #LuminousBlueVariable #Carina #Constellation #MilkyWayGalaxy #Cosmos #Universe #HST #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education

The Science of Snow: Digging for Data | NASA Goddard

The Science of Snow: Digging for Data | NASA Goddard


It takes a lot of field work in challenging conditions to gather important snow data. This is the story of NASA’s last SnowEx campaign and those who participated in it. In March 2023, scientists traveled to research sites in the northern tundra and in Fairbanks, Alaska. Ground crews looked to validate data collected from airborne instruments, while the flight crews continued collecting snow data in order to see what instruments best measure snow globally.

The goal for SnowEx is to determine the best remote-sensing techniques for a potential future satellite. Snow data is extremely important and can tell us things like how much spring runoff can be expected, which is vital for water resource management. 

Learn more about NASA's SnowEx research:

https://snow.nasa.gov/campaigns/snowex


Credit: NASA's Goddard Space Flight Center (GSFC)

Kathleen Gaeta (GSFC AIMMS): Lead Producer

Dr. Carrie Vuyovich (GSFC): Lead Scientist

Sofie Bates (GSFC KBR): Social Media Support

Duration: 9 minutes, 44 seconds

Release Date: May 19, 2023

#NASA #Space #Satellites #EarthObservation #RemoteSensing #Earth #Atmosphere #Weather #Meteorology #Precipitation #Snow #SnowData #SnowExCampaign #AirborneObservations #WaterResources #Fairbanks #Alaska #GSFC #UnitedStates #STEM #Education #HD #Video

Distant Galaxy Cluster eMACS J1353.7+4329: "The Monster Mash" | Hubble

Distant Galaxy Cluster eMACS J1353.7+4329: "The Monster Mash" | Hubble


The NASA/European Space Agency Hubble Space Telescope has captured a monster in the making in this observation of the exceptional galaxy cluster eMACS J1353.7+4329, which lies about eight billion light-years from Earth in the constellation Canes Venatici. This disturbed collection of at least two galaxy clusters is in the process of merging together to create a cosmic monster, a single gargantuan cluster acting as a gravitational lens.

Image Description: A cluster of elliptical galaxies, visible as a dense crowd of oval shapes, each glowing orange around a bright core. Right of the largest, central galaxy, a background galaxy is stretched into two connected, thin arcs by the cluster’s gravity. Various other galaxies are dotted all around, a few being small spirals. A bright star with four long spikes stands out at the right.

Gravitational lensing is a dramatic example of Einstein’s general theory of relativity in action. A celestial body such as a galaxy cluster is sufficiently massive to distort spacetime, which causes the path of light around the object to be visibly bent as if by a vast lens. Gravitational lensing can also magnify distant objects, allowing astronomers to observe objects that would otherwise be too faint and too far away to be detected. It can also distort the images of background galaxies, turning them into streaks of light. The first hints of gravitational lensing are already visible in this image as bright arcs which mingle with the throng of galaxies in eMACS J1353.7+4329.

The data in this image are drawn from an observing proposal called Monsters in the Making, which used two of Hubble’s instruments to observe five exceptional galaxy clusters at multiple wavelengths. These multi-wavelength observations were made possible by Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys.


Credit: European Space Agency (ESA)/Hubble & NASA, H. Ebeling

Release Date: July 10, 2023


#NASA #ESA #Astronomy #Space #Science #Hubble #Stars #Galaxies #GalaxyClusters #GalaxyCluster #eMACSJ135374329 #GravitationalLens #CanesVenatici #Constellation #Cosmos #Universe #HST #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education

Sunday, July 09, 2023

The Wonders of The Eta Carinae Nebula | ESO

The Wonders of The Eta Carinae Nebula | ESO

This panoramic fulldome video shows a detailed view into the spectacular Eta Carinae Nebula. The area shown is that around one of the most massive and most luminous stars known, the Wolf-Rayet star WR 22, as well as the surroundings of the unique star Eta Carinae.

The images shown were obtained by the Wide Field Imager on the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile.

Note: The full dome video display format is designed for projection systems in planetariums.


Credit: European Southern Observatory (ESO)

Duration: 15 seconds

Release Date: Aug. 20, 2018

#NASA #ESO #Astronomy #Space #Science #Nebulae #Nebula #EtaCarinaeNebula #CarinaNebula #GreatCarinaNebula #NGC3372 #Stars #EtaCarinaeStar #BinaryStarSystem #WolfRayetStarWR22 #Carina #Constellation #MilkyWayGalaxy #Universe #Telescope #LaSillaObservatory #Chile #Europe #STEM #Education #FullDome #HD #Video