Thursday, November 30, 2023

Solar Arrays and The Earth's Blue Glow | International Space Station

Solar Arrays and The Earth's Blue Glow | International Space Station


Clouds hang over a glaciated region as the International Space Station began to enter orbital nighttime 262 miles above the Tian Shan mountain range on the border between China, Kazakhstan, and Kyrgyzstan. The golden hue of three of the station's solar arrays contrasts with the backdrop of Earth's blue glow near the center-right of the image.

Follow Expedition 70 Updates:

Expedition 70 Crew
Station Commander: Andreas Mogensen of the European Space Agency (Denmark)
Roscosmos (Russia): Oleg Kononenko, Nikolai Chub, Konstantin Borisov
JAXA: Flight Engineer Satoshi Furukawa (Japan)
NASA: Jasmin Moghbeli, Loral O'Hara (USA)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Credit: NASA's Johnson Space Center (JSC)

Image Date: Nov. 24, 2023


#NASA #Space #Astronomy #Science #ISS #SolarArrays #Planet #Earth #Atmosphere #China #中国 #Kazakhstan #Kyrgyzstan #HumanSpaceflight #Astronauts #JAXA #Japan #ESA #Europe #UnitedStates #Cosmonauts #Russia #SpaceLaboratory #Expedition70 #STEM #Education 

Meet the Perseverance Rover's Mars Samples: "Pilot Mountain" | NASA/JPL

Meet the Perseverance Rover's Mars Samples: "Pilot Mountain" | NASA/JPL

Meet the 21st Martian sample collected by NASA’s Mars Perseverance rover—“Pilot Mountain,” a rock sample believed to be among the youngest preserved material in Jezero Crater. 

The team’s decision to sample this area was based on images taken by the Ingenuity helicopter, which showed interesting rocks scientists had not yet seen. An initial abrasion revealed green, glassy grains that represent some of the youngest material Perseverance has investigated. Comparing rocks of different ages can help shed light on the evolution of the planet.

As of early November 2023, the Perseverance rover has collected and sealed 23 scientifically selected samples inside pristine tubes as part of the Mars Sample Return campaign. The next stage is to get them to Earth for study. 

Considered one of the highest priorities by the scientists in the Science and Astrobiology Decadal Survey 2023-2032, Mars Sample Return would be the first mission to return samples from another planet and provides the best opportunity to reveal the early evolution of Mars, including the potential for ancient life. NASA is teaming with the European Space Agency (ESA) on this important endeavor. 

A key objective for Perseverance's mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet's geology and past climate, pave the way for human exploration of the Red Planet, as well as be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Read about all the carefully selected samples: https://mars.nasa.gov/mars-rock-samples

Learn more about the Mars Sample Return campaign: https://mars.nasa.gov/msr 


Credit: NASA/JPL-Caltech

Duration: 1 minute, 29 seconds

Release Date: Nov. 29, 2023


#NASA #Space #Astronomy #Science #Mars #RedPlanet #Planet #Astrobiology #Geology #Mars2020 #PerseveranceRover #JezeroCrater #PilotMountain #Sample21 #MarsSampleReturn #MSR #Robotics #SpaceTechnology #Engineering #JPL #Caltech #UnitedStates #STEM #Education #HD #Video

Wednesday, November 29, 2023

NASA Artemis V Moon Rocket Engine Test#3: Preparing for Crewed Missions

NASA Artemis V Moon Rocket Engine Test#3: Preparing for Crewed Missions

NASA has conducted the third hot fire in a final 12-test certification series paving the way for production of new RS-25 engines to help power NASA's Space Launch System rocket for future Artemis missions to the Moon and beyond. An Aerojet Rocketdyne RS-25 rocket engine (RS-25 developmental engine E0525) was tested on the Fred Haise Test Stand (formerly A-1 Test Stand) at the John C. Stennis Space Center in Mississippi, on November 29, 2023, at 12:32 EST. This was the third hot fire test out of the 12 planned in the final round of certification testing ahead of production of an updated set of engines for NASA’s Space Launch System (SLS) that will be used beginning with Artemis V. The test had a planned duration of 500 seconds with the RS-25 engine running up to 113% power level—more than the level needed to power SLS.


Credit: National Aeronautics and Space Administration (NASA)

Acknowledgement: SciNews

Duration: 12 minutes

Release Date: Nov. 29, 2023


#NASA #Space #Artemis #ArtemisV #Moon #Rocket #SpaceLaunchSystem #SLS #Engine #RS25 #RS25Testing #Gimble #AerojetRocketdyne #MoonToMars #DeepSpace #Propulsion #Engineering #Technology #NASAStennis #Mississippi #MSFC #UnitedStates #SolarSystem #Exploration #STEM #Education #HD #Video

Pan of Barred Spiral Galaxy NGC 1385: Two Views, Two Filters | Hubble

Pan of Barred Spiral Galaxy NGC 1385: Two Views, Two Filters | Hubble

This luminous tangle of stars and dust is the barred spiral galaxy NGC 1385. It lies about 30 million light-years from Earth. The same galaxy was captured by Hubble before but the two images are notably different. This more recent image has far more pinkish-red and umber shades, whereas the former image was dominated by cool blues. This chromatic variation is not just a creative choice, but a technical one, made in order to represent the different number and type of filters used to collect the data that were used to make the respective images.

It is understandable to be a bit confused as to how the same galaxy, imaged twice by the same telescope, could be represented so differently in two different images. The reason is that—like all powerful telescopes used by professional astronomers for scientific research—Hubble is equipped with a range of filters. These highly specialized components have little similarity to filters used on social media. Those software-powered filters are added after the image has been taken, and cause information to be lost from the image as certain colors are exaggerated or reduced for aesthetic effect. In contrast, telescope filters are pieces of physical hardware that only allow very specific wavelengths of light to enter the telescope as the data are being collected. This does cause light to be lost, but means that astronomers can probe extremely specific parts of the electromagnetic spectrum. This is very useful for a number of reasons. For example, physical processes within certain elements emit light at very specific wavelengths, and filters can be optimized to these wavelengths.

Image Description: A spiral galaxy. It has several arms that are mixed together and an overall oval shape. The center of the galaxy glows brightly. There are bright pink patches and filaments of dark red dust spread across the center.


Credit: ESA/Hubble & NASA, R. Chandar, J. Lee and the PHANGS-HST team  

Duration: 30 seconds

Release Date: Nov. 28, 2023


#NASA #Hubble #Astronomy #Space #Science #Galaxies #Galaxy #NGC1385 #SpiralGalaxy #Barred #Fornax #Constellation #Cosmos #Universe #HST #SpaceTelescope #ESA #Europe #GSFC #STScI #UnitedStates #STEM #Education #HD #Video

Panning across Distant Galaxy Cluster Abell 3192: Plus One More? | Hubble

Panning across Distant Galaxy Cluster Abell 3192: Plus One More? | Hubble


This Hubble image features a massive cluster of brightly glowing galaxies, first identified as Abell 3192. Like all galaxy clusters, this one is suffused with hot gas that emits powerful X-rays, and it is enveloped in a halo of invisible dark matter. All this unseen material—not to mention the many galaxies visible in this image—comprises such a huge amount of mass that the galaxy cluster noticeably curves spacetime around it, making it into a gravitational lens. Smaller galaxies behind the cluster appear distorted into long, warped arcs around the cluster’s edges.

The galaxy cluster is located in the constellation Eridanus, but the question of its distance from Earth is a more complicated one. Abell 3192 was originally documented in the 1989 update of the Abell catalogue, a catalogue of galaxy clusters that was first published in 1958. At that time, Abell 3192 was thought to comprise a single cluster of galaxies, concentrated at a single distance. However, further research revealed something surprising: the cluster’s mass seemed to be densest at two distinct points rather than one. 

It was subsequently shown that the original Abell cluster actually comprised two independent galaxy clusters—a foreground group around 2.3 billion light-years from Earth, and a further group at the greater distance of about 5.4 billion light-years from our planet. The more distant galaxy cluster, included in the Massive Cluster Survey as MCS J0358.8-2955, is central in this image. The two galaxy groups are thought to have masses equivalent to around 30 trillion and 120 trillion times the mass of the Sun, respectively. These two largest galaxies at the center of this image are part of MCS J0358.8-2955; the smaller galaxies you see here, however, are a mixture of the two groups within Abell 3192.

Image Description: A cluster of galaxies, concentrated around what appear to be two large elliptical galaxies. The rest of the black background is covered in smaller galaxies of all shapes and sizes. In the top left and bottom right, beside the two large galaxies, some galaxies appear notably distorted into curves by gravity.

Science paper by V. Hamilton-Morris et al.: https://iopscience.iop.org/article/10.1088/2041-8205/748/2/L23


Credit: ESA/Hubble & NASA, G. Smith, H. Ebeling, D. Coe

Duration: 30 seconds

Release Date: Nov. 27, 2023


#NASA #ESA #Astronomy #Space #Hubble #Galaxies #GalaxyClusters #Abell3192 #ABellCluster #MCSJ035882955 #Eridanus #Constellation #Cosmos #Universe #HST #HubbleSpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education #HD #Video

Panning across Irregular Galaxy NGC 2814 in Ursa Major | Hubble

Panning across Irregular Galaxy NGC 2814 in Ursa Major | Hubble

This Hubble picture features NGC 2814, an irregular galaxy that lies about 85 million light years from Earth. In this image, captured using Hubble’s Advanced Camera for Surveys (ACS), the galaxy appears to be quite isolated. Visually, it looks like a stroke of bright paint across a dark background. However, looks can be deceiving. NGC 2814 actually has three close (in astronomical terms) galactic neighbors: a side-on spiral galaxy known as NGC 2820; an irregular galaxy named IC 2458; and a face-on non-barred spiral galaxy called NGC 2805. Collectively, the four galaxies make up a galaxy group known as Holmberg 124. In some literature these galaxies are referred to as a group of ‘late-type galaxies’.

The terminology ‘late-type’ refers to spiral and irregular galaxies, whilst ‘early-type’ refers to elliptical galaxies. This rather confusing terminology has led to a common misconception within the astronomy community. It is still quite widely believed that Edwin Hubble inaccurately thought that elliptical galaxies were the evolutionary precursors to spiral and irregular galaxies, and that that is the reason why ellipticals are classed as ‘early-type’ and spirals and irregulars are classed as ‘late-type’. This misconception is due to the Hubble ‘tuning fork’ of galactic classification. It visually shows galaxy types proceeding from elliptical to spiral, in a sequence that could easily be interpreted as a temporal evolution. However, Hubble actually adopted the terms ‘early-type’ and ‘late-type’ from much older astronomical terminology for stellar classifications, and did not mean to state that ellipticals were literally evolutionary precursors to spiral and irregular galaxies. In fact, he explicitly said in his 1927 paper that ‘the nomenclature . . . [early and late] . . . refers to position in the sequence, and temporal connotations are made at one’s peril’.

Despite Hubble himself being quite emphatic on this topic, the misunderstanding persists almost a hundred years later, and perhaps provides an instructive example of why it is helpful to classify things with easy-to-interpret terminology from the get-go!

Image Description: An irregular galaxy, a narrow streak of stars crossed by faint dust lanes. It is surrounded by a bright glow, appearing like a beam of light in the center of a dark background. A scatter of small, distant galaxies and a single, bright star surround the galaxy.


Credit: European Space Agency (ESA)/Hubble & NASA, C. Kilpatrick

Duration: 30 seconds

Release Date: Nov. 20, 2023


#NASA #ESA #Hubble #Astronomy #Space #Science #Galaxies #Galaxy #NGC2814 #NGC2820 #NGC2805 #IC2458 #Holmberg124 #UrsaMajor #Constellation #Cosmos #Universe #HST #HubbleSpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education #HD #Video

Tuesday, November 28, 2023

Panning on Protostar in Perseus: Herbig Haro Object 797 | Webb Telescope

Panning on Protostar in Perseus: Herbig Haro Object 797 | Webb Telescope

This image was captured with Webb’s Near-InfraRed Camera (NIRCam). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualize the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks.

Using ground-based observations, researchers have previously found that the for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of center), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls.


Credit: ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies), N. Bartmann (ESA/Webb)  

Duration: 30 seconds

Release Date: Nov. 28, 2023


#NASA #ESA #Astronomy #Space #Science #HerbigHaro797 #StarCluster #IC348 #Perseus #Constellation #JamesWebb #SpaceTelescope #JWST #InfraredLight #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #UnitedStates #STEM #Education #HD #Video

NASA’s Fermi Gamma-ray Space Telescope Finds 300 Gamma-Ray Pulsars

NASA’s Fermi Gamma-ray Space Telescope Finds 300 Gamma-Ray Pulsars

This visualization shows 294 gamma-ray pulsars, first plotted on an image of the entire starry sky as seen from Earth and then transitioning to a view from above our galaxy. The symbols show different types of pulsars. Young pulsars blink in real time except for the Crab that pulses slower because its rate is only slightly lower than the video frame rate. Millisecond pulsars remain steady, pulsing too quickly to be seen. The Crab, Vela, and Geminga were among the 11 gamma-ray pulsars known before Fermi launched. Other notable objects are also highlighted. Distances are shown in light-years (abbreviated ly).

A new catalog produced by a French-led international team of astronomers shows that NASA’s Fermi Gamma-ray Space Telescope has discovered 294 gamma-ray-emitting pulsars, while another 34 suspects await confirmation. This is 27 times the number known before the mission launched in 2008.

Pulsars touch on a wide range of astrophysics research, from cosmic rays and stellar evolution to the search for gravitational waves and dark matter. They are a type of neutron star, the city-sized leftover of a massive sun that has exploded as a supernova. Neutron stars, containing more mass than our Sun in a ball less than 17 miles wide, represent the densest matter astronomers can study directly. They possess strong magnetic fields, produce streams of energetic particles, and spin quickly 716 times a second for the fastest known. Pulsars, in addition, emit narrow beams of energy that swing lighthouse-like through space as the objects rotate. When one of these beams sweeps past Earth, astronomers detect a pulse of emission.

The new catalog represents the work of 170 scientists across the globe. A dozen radio telescopes carry out regular monitoring of thousands of pulsars, and radio astronomers search for new pulsars within gamma-ray sources discovered by Fermi. Other researchers have teased out gamma-ray pulsars that have no radio counterparts through millions of hours of computer calculation, a process called a blind search.

Fermi's neutron star discoveries even extend beyond our galaxy. The mission discovered the first gamma-ray pulsar in another galaxy, the neighboring Large Magellanic Cloud, in 2015. And in 2021, astronomers announced the discovery of a giant gamma-ray flare from a magnetar—a different type of neutron star—located in the Sculptor galaxy, about 11.4 million light-years away.


Video Credit: NASA's Goddard Space Flight Center

Producer: Scott Wiessinger (KBR Wyle Services, LLC)

Visualizer: Mark SubbaRao (NASA/GSFC) [Lead]

Visualizer: A. J. Christensen (AVL NCSA/University of Illinois)

Science Writer: Francis Reddy (University of Maryland College Park)

Editor: Scott Wiessinger (KBR Wyle Services, LLC)

Scientist: David A. Smith (Laboratoire d'Astrophysique de Bordeaux) [Lead]

Scientist: Elizabeth Hays (NASA/GSFC)

Duration: 1 minute, 15 seconds

Release Date: Nov. 28, 2023


#NASA #Space #Astronomy #Science #Stars #NeutronStars #Pulsars #GammaRayPulsars #Cosmos #Universe #Astrophysics #Physics #GammaRaySpaceTelescope #FermiMission #GSFC #UnitedStates #France #STEM #Education #Visualization #HD #Video

A Prominent Protostar in Perseus: Herbig Haro Object 797 | Webb Telescope

A Prominent Protostar in Perseus: Herbig Haro Object 797 | Webb Telescope


This new NASA/European Space Agency/Canadian Space Agency James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, dominating the lower half of this image, is located close to the young open star cluster IC 348 that is near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars.

This image was captured with Webb’s Near-InfraRed Camera (NIRCam). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualize the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks.

Image Description: In the lower half of the image is a narrow, horizontal nebula that stretches from edge to edge. It is brightly colored with more variety on its right side. In the upper half there is a glowing point with multi-colored light radiating from it in all directions. A bright star with long diffraction spikes lies along the right edge, and a few smaller stars are spread around. The background is covered in a thin haze.

Using ground-based observations, researchers have previously found that the for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. 

In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of centre), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls.


Image Credit: ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies)

Release Date: Nov. 28, 2023


#NASA #ESA #Astronomy #Space #Science #HerbigHaro797 #StarCluster #IC348 #Perseus #Constellation #JamesWebb #SpaceTelescope #JWST #InfraredLight #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #UnitedStates #STEM #Education

China Releases First Image of its Complete Space Station | CGTN

China Releases First Image of its Complete Space Station | CGTN

The China Manned Space Agency (CMSA) released a high-definition panoramic image of China Space Station at a press conference in the Hong Kong Special Administrative Region (SAR) on November 28, 2023. The photo was shot by the Shenzhou-16 crew before they returned to Earth on October 30, 2023. This is the first photo showing the entire configuration of the China Space Station in orbit with Earth visible in the background.

Shenzhou-17 is the sixth crew of three astronauts on a mission to the China Space Station. Shenzhou-17 is also the twelfth crewed and seventeenth flight overall of China's Shenzhou spaceflight program.

Shenzhou-17 Crew:

Hongbo Tang (Commander)

Shengjie Tang (Mission Specialist)

Xinlin Jiang (Mission Specialist)

Shenzhou-16 Crew:

Jing Haipeng (Commander) 

Zhu Yangzhu (Mission Specialist)

Gui Haichao (Mission Specialist)


Credit: China Global Television Network (CGTN)

Duration: 34 seconds

Release Date: Nov. 28, 2023

#NASA #Space #China #中国 #Shenzhou16 #Shenzhou17 #神舟十七号 #CrewSpacecraft #Taikonauts #Astronauts #HongboTang #ShengjieTang #XinlinJiang #SpaceLaboratory #CSS #ChinaSpaceStation #TiangongSpaceStation #中国空间站 #CMSA #国家航天局 #Science #SpaceTechnology #HumanSpaceflight #STEM #Education #HD #Video

What Would Mars Look Like if an Astronaut Could Orbit the Planet? | NASA/JPL

What Would Mars Look Like if an Astronaut Could Orbit the Planet? | NASA/JPL

Mars Report—Nov. 2023: NASA’s Mars Odyssey orbiter captured the first-ever views of Mars that showcase the curving horizon and layers of atmosphere, similar to what an astronaut sees of Earth from the International Space Station. While there are no astronauts yet at Mars, this view gives us a sense of what they might see. This series of panoramic images was taken from an altitude of about 250 miles (400 kilometers), the same altitude at which the space station flies above Earth. These new images capture gauzy layers of clouds and dust. They will help scientists better understand the Martian atmosphere.

In this Mars Report, learn how engineers at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space, the company that built Odyssey, had to maneuver the spacecraft to capture these views. Odyssey Deputy Project Scientist Laura Kerber also breaks down the significance of the new images.

The 2001 Mars Odyssey mission is NASA’s longest operating spacecraft at Mars, marking 22 years in orbit in October 2023. 

For more information on Odyssey, go to: https://science.nasa.gov/mission/odyssey


Credit: NASA/JPL-Caltech/ASU/Lockheed Martin Space

Duration: 2 minutes

Release Date: Nov. 28, 2023


#NASA #Space #Astronomy #Science #Mars #Planet #RedPlanet #Atmosphere #MarsOdyssey #MarsOdysseySpacecraft  #Orbiter #LockheedMartin #ASU #JPL #Caltech #STEM #Education #HD #Video

The Westerhout 5 (W5) Stellar Blast Furnace | NASA's Spitzer Space Telescope

The Westerhout 5 (W5) Stellar Blast Furnace | NASA's Spitzer Space Telescope

Westerhout 5 (W5) is a chaotic region, sculpted by the glare of one generation of massive stars that is giving rise to the next. Generations of stars can be seen in these infrared portraits from NASA's Spitzer Space Telescope. In this wispy star-forming region, called Westerhout 5 (W5), the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. 

W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

These images contain the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.


Credit: ExploreAstro/Caltech IPAC

Duration: 6 minutes

Release Date: Dec. 29, 2008

#NASA #Astronomy #Space #Science #StellarNursery #Nebula #Westerhout5 #W5 #Sharpless2199 #LBN667 #SoulNebula #Cassiopeia #Constellation #Cosmos #Universe #SST #SpitzerSpaceTelescope #Infrared #CfA #JPL #Caltech #UnitedStates #Europe #STEM #Education #HD #Video

Westerhout 5 Star Formation Region: 4 Colors | NASA's Spitzer Space Telescope

Westerhout 5 Star Formation Region: 4 Colors | NASA's Spitzer Space Telescope


Generations of stars can be seen in this infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called Westerhout 5 (W5), the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

This image contains the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

This picture was taken with Spitzer's infrared array camera. It is a four-color composite, where light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.


Image Credit: NASA/JPL-Caltech/L. Allen & X. Koenig (Harvard-Smithsonian CfA)

Release Date: July 21, 2008


#NASA #Astronomy #Space #Science #StellarNursery #Nebula #Westerhout5 #W5 #Sharpless2199 #LBN667 #SoulNebula #Cassiopeia #Constellation #Cosmos #Universe #SST #SpitzerSpaceTelescope #Infrared #CfA #JPL #Caltech #UnitedStates #Europe #STEM #Education

Monday, November 27, 2023

Westerhout 5 Star Formation Region | NASA's Spitzer Space Telescope

Westerhout 5 Star Formation Region | NASA's Spitzer Space Telescope


Generations of stars can be seen in this infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called Westerhout 5 (W5), the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.


Image Credit: NASA/JPL-Caltech/L. Allen & X. Koenig (Harvard-Smithsonian CfA)

Release Date: July 21, 2008


#NASA #Astronomy #Space #Science #StellarNursery #Nebula #Westerhout5 #W5 #Sharpless2199 #LBN667 #SoulNebula #Cassiopeia #Constellation #Cosmos #Universe #WISE #SST #SpitzerSpaceTelescope #Infrared #CfA #JPL #Caltech #UnitedStates #Europe #STEM #Education

Westerhout 5: Cosmic Mountains of Creation | NASA's Spitzer Space Telescope

Westerhout 5: Cosmic Mountains of Creation | NASA's Spitzer Space Telescope


This image from infrared NASA's Spitzer Space Telescope reveals billowing mountains of dust ablaze with the fires of stellar youth. These are star-forming clouds of cool gas and dust that have been sculpted into pillars by radiation and winds from hot, massive stars.

The Spitzer image shows the eastern edge of a region known as Westerhout 5 (W5), in the Cassiopeia constellation 7,000 light-years away. This region is dominated by a single massive star, whose location outside the pictured area is "pointed out" by the finger-like pillars. The pillars themselves are colossal, together resembling a mountain range. The largest of the pillars observed by Spitzer entombs hundreds of never-before-seen embryonic stars, and the second largest contains dozens.

"We believe that the star clusters lighting up the tips of the pillars are essentially the offspring of the region's single, massive star," said Dr. Lori Allen, lead investigator of the new observations, from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "It appears that radiation and winds from the massive star triggered new stars to form."

Spitzer was able to see the stars forming inside the pillars thanks to its infrared vision. Visible-light images of this same region show dark towers outlined by halos of light. The stars inside are cloaked by walls of dust. However, infrared light coming from these stars can escape through the dust, providing astronomers with a new view.

"With Spitzer, we can not only see the stars in the pillars, but we can estimate their age and study how they formed," said Dr. Joseph Hora, a co-investigator, also from the Harvard-Smithsonian Center for Astrophysics.

The W5 region is referred to as high-mass star-forming regions. They start out as thick and turbulent clouds of gas and dust that later give birth to families of stars, that can be 10 times more massive than the sun. Radiation and winds from the massive stars subsequently blast the cloudy material outward, so that only the densest pillar-shaped clumps of material remain. The process is akin to the formation of desert mesas, which are made up of dense rock that resisted water and wind erosion.

According to theories of triggered star formation, the pillars eventually become dense enough to spur the birth of a second generation of stars. Those stars, in turn, might also trigger successive generations. Astronomers do not know if the sun, that formed about five billion years ago, was originally a member of this type of extended stellar family.

Allen and her colleagues believe they have found evidence for triggered star formation in the new Spitzer image. Though it is possible the clusters of stars in the pillars are siblings of the single massive star, the astronomers say the stars are more likely its children.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., managed the Spitzer mission for NASA's Science Mission Directorate. Science operations were conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech. NASA's Goddard Space Flight Center, Greenbelt, Md., built Spitzer's infrared array camera that took these observations. The instrument's principal investigator was Dr. Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics.


Image Credit: NASA's Jet Propulsion Laboratory (JPL)

Release Date: Nov. 9th, 2005


#NASA #Astronomy #Space #Science #StellarNursery #Nebula #Westerhout5 #W5 #Sharpless2199 #LBN667 #SoulNebula #Cassiopeia #Constellation #Cosmos #Universe #WISE #SST #SpitzerSpaceTelescope #Infrared #CfA #JPL #Caltech #UnitedStates #Europe #STEM #Education

NASA's Chandra Observatory Catches Spider Pulsars Destroying Nearby Stars

NASA's Chandra Observatory Catches Spider Pulsars Destroying Nearby Stars

A horde of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri are helping astronomers understand how these spider pulsars prey on nearby stars.

A pulsar is the spinning dense core that remains after a massive star collapses into itself. Rapidly rotating neutron stars can produce beams of radiation. Like a rotating lighthouse beam, the radiation can be observed as a powerful, pulsing source of radiation, or pulsar. There are pulsars that spin around dozens to hundreds of times per second, and these are known as millisecond pulsars.

Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them. Through winds of energetic particles streaming from their surfaces, the spider pulsars methodically strip the companion stars of their outer layers.

Astronomers recently discovered 18 millisecond pulsars in Omega Centauri—located about 17,700 light-years from Earth—using radio telescopes. A pair of astronomers from the University of Alberta in Canada then looked at Chandra data of Omega Centauri to see if how many of the millisecond pulsars give off X-rays.

They found 11 millisecond pulsars emitting X-rays, and five of those were spider pulsars concentrated near the center of Omega Centauri. The researchers next combined the data of Omega Centauri with Chandra observations of 26 spider pulsars in 12 other globular clusters.

Spider pulsars are typically separated from their companions by only about one to 14 times the distance between the Earth and Moon. This close proximity—cosmically speaking—causes the energetic particles from the pulsars to be particularly damaging to their companion stars.

Chandra's sharp X-ray vision is crucial for studying millisecond pulsars in globular clusters because they often contain large numbers of X-ray sources in a small part of the sky, making it difficult to distinguish sources from each other.


Video Credit: Chandra X-ray Observatory

Duration: 2 minutes, 47 seconds

Release Date: Nov. 27, 2023


#NASA #Space #Astronomy #Science #Stars #GlobularCluster #OmegaCentauri #NeutronStars #Pulsars #SpidarPulsars #Centaurus #Constellation #Cosmos #Universe #NASAChandra #ChandraObservatory #Xray #MSFC #SpaceTelescope #UnitedStates #STEM #Education #HD #Video