Friday, January 12, 2024

NASA’s X-59 Supersonic Aircraft: Rollout Day | The Quesst Mission

NASA’s X-59 Supersonic Aircraft: Rollout Day | The Quesst Mission

This is the X-59, a single-seat X-plane aiming to reduce the sound of the sonic boom to a mere thump. It opens the possibility for commercial supersonic flights over land, which has been prohibited since 1973. Be on the lookout for first flight! NASA’s X-59 quiet supersonic research aircraft image released for rollout day, Jan. 12, 2024. (This not a "render.") 


NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California during sunrise, shortly after completion of painting. With its unique design, including a 38-foot-long nose, the X-59 was built to demonstrate the ability to fly supersonic, or faster than the speed of sound, while reducing the typically loud sonic boom produced by aircraft at such speeds to a quieter sonic “thump”. 

The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land, currently banned in the United States, by making sonic booms quieter.

NASA’s X-59 quiet supersonic research aircraft is the product of decades of aeronautics and supersonic flight research. The X-59 is designed to be able to fly supersonic, or faster than the speed of sound, without producing a loud sonic boom, which occurs when aircraft fly at such speeds. Instead, the X-59 is designed to reduce that boom to a quieter sonic “thump.” 

The X-59's goal is to help change existing national and international aviation rules that ban commercial supersonic flight over land.

Learn more here:

https://www.nasa.gov/flightlog

X-59 Free Maker Bundle (STEM Education):

https://www.nasa.gov/sites/default/files/atoms/files/x-59-maker-bundle-v8.pdf

Hablas español? Visita: https://ciencia.nasa.gov/el-x-59-se-asemeja-una-aeronave-real para aprender mas sobre la mision Quesst


Image Credit: NASA/Steve Freeman/Lockheed Martin

Image Dates: Jan 12, 2024 & Dec. 12, 2023


#NASA #Aerospace #SupersonicFlight #SupersonicAircraft #X59 #Sonicboom #QuietAviation #Aviation #QuesstMission #CommercialAviation #Science #Physics #Engineering #AerospaceResearch #AeronauticalResearch #FlightTests #LockheedMartin #NASAArmstrong #AFRC #EdwardsAFB #California #UnitedStates #STEM #Education

2023 Was the Hottest Year on Record | NASA Goddard

2023 Was the Hottest Year on Record | NASA Goddard

2023 was Earth’s warmest year since 1880, and the last 10 consecutive years have been the warmest 10 on record. Why does NASA, a space agency, look at Earth’s temperature? And how do we even measure global temperature? 


Credit: NASA's Goddard Space Flight Center

Kathleen Gaeta (NASA ROTHE): Lead Producer, Lead Videographer, Writer, Editor

Gavin Schmidt (NASA GISS): Lead Scientist

Peter Jacobs (NASA GSFC): Supporting Scientist

Grace Weikert (GSFC ROTHE): Associate Producer

Katie Jepson (GSFC KBR): Associate Producer

Mark Subbarao (NASA GSFC): Lead Visualizer

Krystofer Kim (GSFC ROTHE): Lead Graphics Animator

Duration: 9 minutes

Release Date: Jan. 12, 2024


#NASA #Space #Satellites #Science #Planet #Earth #Year2023 #GlobalTemperatureRecords #Weather #Meteorology #ClimateChange #GlobalHeating #Climate #Environment #InSituMeasurements #GlobalTemperatureMap #GreenhouseGases #GHG #EarthObservation #RemoteSensing #NASAGISS  #GSFC #UnitedStates #STEM #Education #HD #Video

NASA's Space to Ground: Laser Link | Week of Jan. 12, 2024

NASA's Space to Ground: Laser Link Week of Jan. 12, 2024

NASA's Space to Ground is your weekly update on what is happening aboard the International Space Station. Four private astronauts representing the United States, Italy, Turkey, and Sweden are scheduled to launch to the station aboard the SpaceX Dragon Freedom spacecraft at 5:11 p.m. EST on Jan. 17, 2024. The Axiom Mission 3 (Ax-3) quartet, commanded by Michael Lopez-Alegria from the U.S. and piloted by Walter Villadei from Italy, will dock to the Harmony module’s forward port at 5:15 a.m. on Jan. 19. The duo will be joined by Ax-3 Mission Specialists Alper Gezeravci from Turkey and Marcus Wandt from Sweden for two weeks of research and education activities aboard the orbital outpost.

Follow Expedition 70 Updates:

https://blogs.nasa.gov/spacestation/

Expedition 70 Crew

Station Commander: Andreas Mogensen of the European Space Agency (Denmark)

Roscosmos (Russia): Oleg Kononenko, Nikolai Chub, Konstantin Borisov

JAXA: Flight Engineer Satoshi Furukawa (Japan)

NASA: Jasmin Moghbeli, Loral O'Hara (USA)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation


Video Credit: NASA's Johnson Space Center (JSC)

Duration: 3 minutes, 18 seconds

Release Date: Jan 12, 2024 


#NASA #Space #ISS #Science #LaserCommunications #AxiomSpace #Ax3Mission #Astronauts #LoralOHara #JasminMoghbeli #UnitedStates #AndreasMogensen #Denmark #Danmark #Europe #SatoshiFurukawa #JAXA #Japan #日本 #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #Expedition70 #STEM #Education #HD #Video

Planet Mars: Isolated Araneiform Topography | NASA Mars Reconnaissance Orbiter

Planet Mars: Isolated Araneiform Topography | NASA Mars Reconnaissance Orbiter

Have you ever found that to describe something you had to go to the dictionary and search for just the right word?

The South Polar terrain of Mars is so full of unearthly features that we had to visit Mr. Webster to find a suitable term. “Araneiform” means “spider-like.” These are channels that are carved in the surface by carbon dioxide gas. We do not have this process on Earth.

The channels are somewhat radially organized and widen and deepen as they converge. In the past we have just referred to them as “spiders.” “Isolated araneiform topography” means that our features look like spiders that are not in contact with each other.

Image cutout is less than 1 km (under 1 mi) across and the spacecraft altitude was 244 km (152 mi).

The University of Arizona, Tucson, operates the High Resolution Imaging Science Experiment (HiRISE) instrument, that was built by Ball Aerospace & Technologies Corp., Boulder, Colorado. 

NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.

“For 17 years, MRO has been revealing Mars to us as no one had seen it before,” said the mission’s project scientist, Rich Zurek of JPL.


Image Credit: NASA/JPL-Caltech/University of Arizona

Release Date: Jan. 10, 2024


#NASA #Space #Astronomy #Mars #Planet #RedPlanet #Science #Geology #Landscape #Terrain #Geoscience #SouthPole #Araneiform #Topography #CO2Gas #MRO #Orbiter #Spacecraft #HiRISE #Camera #JPL #Caltech #UArizona #BallAerospace #STEM #Education 

Gravity-1: China's 'Most Powerful' Solid-fuel Commercial Rocket Explained

Gravity-1: China's 'Most Powerful' Solid-fuel Commercial Rocket Explained

The first launch of the Gravity-1 solid-fueled rocket took place from a sea-based platform off the coast of Haiyang, Shandong Province, China, on January 11, 2024, at 05:30 UTC (13:30 local time). Gravity-1 was designed by the Chinese aerospace company OrienSpace to launch payloads of up to 6.5 tons to low-Earth orbit (LEO), up to 4.2 tons to a 500km Sun-synchronous orbit (SSO) or up to 3.7 tons to a 700km Sun-synchronous orbit (SSO). It is nearly twice as heavy as the European Space Agency’s Vega-C, the previous record holder.

Gravity-1 successfully launched three Yunyao-1 satellites. The Yunyao-1 satellites are for Tianjin, China-based Yunyao Yuhang. Yunyao plans to construct a satellite constellation to provide data for global weather forecasting.

OrienSpace's launch of China's most powerful commercial solid-fuel rocket is a coup for the country's private aerospace sector. Gravity-1 represents a 'significant advancement in independent innovation within China’s commercial carrier rockets’, according to the official Aerospace China newspaper.

Gravity-1 has a thrust of 600 tonnes and can lift 6.5 tonnes of cargo into near Earth orbit. The rocket’s cargo compartment—4.2 meters in diameter and 9 meters tall (13.7 by 30 feet)—is spacious enough to accommodate cargo for the China Space Station, if needed. The Gravity-1 rocket can support the launch of up to 30 satellites weighing 100kg (220lbs) each, according to Aerospace China. The Gravity-1 consists of seven solid rocket motors. The bundling and separation of large solid rocket boosters has been a challenge around the world.

The Gravity-1 Mission was the fourth Chinese orbital launch of 2024 as of Jan. 11. It followed shortly after a Kuaizhou-1A solid rocket launch Jan. 11 (UTC) and the Jan. 9 launch of the China-Europe Einstein Probe.

OrienSpace has not disclosed the cost of its first launch, but chief operating officer Wei Kai said the company had adopted a series of measures to establish a large-scale, convenient and low-cost launch service model.

Its factory in Haiyang will achieve an annual production capacity of 20 rockets, he said.

The use of solid fuel is "convenient and safe." It allows for the process of rocket assembly, testing and launch to be completed within a 5km radius, significantly reducing production time and cost.

Offshore launches offer additional advantages in terms of safety and frequency with potential for weekly launch missions using a single vessel, according to OrienSpace.

Wei told Aerospace China the Gravity-1 rocket structure was designed for rapid mass production. Its core and boosters have the same diameter, simplifying the manufacturing process and significantly improving manufacturing efficiency, while cutting production costs.

Chief designer Bu Xiangwei said the firm’s improvements—such as enclosing the rocket in a white protective cover before transport and launch—had saved considerable costs.

The flexible cover kept the rocket’s temperature at around 15 degrees Celsius in winter and isolated external rain and snow.

“Through such an inflatable protective cover, we can achieve a low-cost and simplified environmental support system for carrier rockets,” Bu said, according to Aerospace China.

“The juncture where the rocket booster meets the core stage, no larger than an A4 sheet of paper, must endure a force of roughly 200 tonnes,” said Yao Song, the co-CEO of OrienSpace.

“Its strength must be matched also by its simplicity, ensuring a clean break when the time comes.

“This, indeed, showcases the depth of our technological expertise.”

Behind this feat stands a team of about 100 scientists and engineers who spent about three years carrying out 23 large-scale ground tests of the rocket system, 489 tests of individual components and 1,452 iteration tests to improve the rocket’s overall performance.

As China embarks on an ambitious plan to build a constellation of 13,000 satellites to rival SpaceX’s Starlink, the need for reliable and cost-effective launch vehicles is paramount. Many commercial aerospace companies are eyeing this lucrative opportunity.

OrienSpace said it aimed to achieve liquid rocket recyclability and reusability within two years, increasing its carrying capacity to 15-20 tonnes and further driving down costs.


Video Credits: China Central Television (CCTV)/China Global Television Network (CGTN)/OrienSpace

Acknowledgements: SciNews/SCMP/SpaceNews

Duration: 3 minute

Release Date: Jan. 12, 2024


#NASA #Space #Satellites #Earth #China #中国 #OrienSpace #东方空间 #SeaLaunch #Haiyang #ShandongProvince #RocketLaunch #Gravity1 #引力1号 #SolidFuelRocket #Yunyao1 #CommercialSpace #Spaceflight #SpaceTechnology #Aerospace #AerospaceEngineering #History #STEM #Education #HD #Video

Gravity-1: Launch of China's 'Most Powerful' Solid-Fuel Commercial Rocket

Gravity-1: Launch of China's 'Most Powerful' Solid-Fuel Commercial Rocket

The first launch of the Gravity-1 solid-fueled rocket took place from a sea-based platform off the coast of Haiyang, Shandong Province, China, on January 11, 2024, at 05:30 UTC (13:30 local time). Gravity-1 was designed by the Chinese aerospace company OrienSpace to launch payloads of up to 6.5 tons to low-Earth orbit (LEO), up to 4.2 tons to a 500km Sun-synchronous orbit (SSO) or up to 3.7 tons to a 700km Sun-synchronous orbit (SSO). It is nearly twice as heavy as the European Space Agency’s Vega-C, the previous record holder.

Gravity-1 successfully launched three Yunyao-1 satellites. The Yunyao-1 satellites are for Tianjin, China-based Yunyao Yuhang. Yunyao plans to construct a satellite constellation to provide data for global weather forecasting.

OrienSpace's launch of China's most powerful commercial solid-fuel rocket is a coup for the country's private aerospace sector. Gravity-1 represents a 'significant advancement in independent innovation within China’s commercial carrier rockets’, according to the official Aerospace China newspaper.

Gravity-1 has a thrust of 600 tonnes and can lift 6.5 tonnes of cargo into near Earth orbit. The rocket’s cargo compartment—4.2 meters in diameter and 9 meters tall (13.7 by 30 feet)—is spacious enough to accommodate cargo for the China Space Station, if needed. The Gravity-1 rocket can support the launch of up to 30 satellites weighing 100kg (220lbs) each, according to Aerospace China. The Gravity-1 consists of seven solid rocket motors. The bundling and separation of large solid rocket boosters has been a challenge around the world.

The Gravity-1 Mission was the fourth Chinese orbital launch of 2024 as of Jan. 11. It followed shortly after a Kuaizhou-1A solid rocket launch Jan. 11 (UTC) and the Jan. 9 launch of the China-Europe Einstein Probe.

OrienSpace has not disclosed the cost of its first launch, but chief operating officer Wei Kai said the company had adopted a series of measures to establish a large-scale, convenient and low-cost launch service model.

Its factory in Haiyang will achieve an annual production capacity of 20 rockets, he said.

The use of solid fuel is "convenient and safe." It allows for the process of rocket assembly, testing and launch to be completed within a 5km radius, significantly reducing production time and cost.

Offshore launches offer additional advantages in terms of safety and frequency with potential for weekly launch missions using a single vessel, according to OrienSpace.

Wei told Aerospace China the Gravity-1 rocket structure was designed for rapid mass production. Its core and boosters have the same diameter, simplifying the manufacturing process and significantly improving manufacturing efficiency, while cutting production costs.

Chief designer Bu Xiangwei said the firm’s improvements—such as enclosing the rocket in a white protective cover before transport and launch—had saved considerable costs.

The flexible cover kept the rocket’s temperature at around 15 degrees Celsius in winter and isolated external rain and snow.

“Through such an inflatable protective cover, we can achieve a low-cost and simplified environmental support system for carrier rockets,” Bu said, according to Aerospace China.

“The juncture where the rocket booster meets the core stage, no larger than an A4 sheet of paper, must endure a force of roughly 200 tonnes,” said Yao Song, the co-CEO of OrienSpace.

“Its strength must be matched also by its simplicity, ensuring a clean break when the time comes.

“This, indeed, showcases the depth of our technological expertise.”

Behind this feat stands a team of about 100 scientists and engineers who spent about three years carrying out 23 large-scale ground tests of the rocket system, 489 tests of individual components and 1,452 iteration tests to improve the rocket’s overall performance.

As China embarks on an ambitious plan to build a constellation of 13,000 satellites to rival SpaceX’s Starlink, the need for reliable and cost-effective launch vehicles is paramount. Many commercial aerospace companies are eyeing this lucrative opportunity.

OrienSpace said it aimed to achieve liquid rocket recyclability and reusability within two years, increasing its carrying capacity to 15-20 tonnes and further driving down costs.


Video Credit: China Central Television (CCTV)/OrienSpace

Acknowledgements: SciNews/SCMP/SpaceNews

Duration: 1 minute

Release Date: Jan. 11, 2024


#NASA #Space #Satellites #Earth #China #中国 #OrienSpace #东方空间 #SeaLaunch #Haiyang #ShandongProvince #RocketLaunch #Gravity1 #引力1号 #SolidFuelRocket #Yunyao1 #CommercialSpace #Spaceflight #SpaceTechnology #Aerospace #AerospaceEngineering #History #STEM #Education #HD #Video

Thursday, January 11, 2024

City Lights of North America, Earth Airglow & Stars | International Space Station

City Lights of North America, Earth Airglow & Stars | International Space Station


The city lights of North America appear under Earth's airglow and a starry night sky in this photograph from the International Space Station as it orbited 262 miles above North Dakota.
Airglow occurs when atoms and molecules in the upper atmosphere, excited by sunlight, emit light to shed their excess energy. Or, it can happen when atoms and molecules that have been ionized by sunlight collide with and capture a free electron. In both cases, they eject a particle of light—called a photon—in order to relax again. The phenomenon is similar to auroras, but where auroras are driven by high-energy particles originating from the solar wind, airglow is energized by ordinary, day-to-day solar radiation.

Unlike auroras, which are episodic and fleeting, airglow constantly shines throughout Earth’s atmosphere, and the result is a tenuous bubble of light that closely encases our entire planet. (Auroras, on the other hand, are usually constrained to Earth’s poles.) Just a tenth as bright as all the stars in the night sky, airglow is far more subdued than auroras, too dim to observe easily except in orbit or on the ground with clear, dark skies and a sensitive camera. However, it is a marker nevertheless of the dynamic region where Earth meets space . . .

Follow Expedition 70 Updates:

https://blogs.nasa.gov/spacestation/

Expedition 70 Crew

Station Commander: Andreas Mogensen of the European Space Agency (Denmark)

Roscosmos (Russia): Oleg Kononenko, Nikolai Chub, Konstantin Borisov

JAXA: Flight Engineer Satoshi Furukawa (Japan)

NASA: Jasmin Moghbeli, Loral O'Hara (USA)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation


Credit: NASA's Johnson Space Center (JSC)

Image Date: Jan. 10, 2024


#NASA #Space #Science #ISS #Stars #Planet #Earth #Airglow #Atmosphere #NorthAmerica #UnitedStates #Canada #Astronauts #Cosmonauts #HumanSpaceflight #SpaceTechnology #UnitedStates #Russia #Роскосмос #JAXA #Japan #SpaceResearch #SpaceLaboratory #OverviewEffect #OrbitalPerspective #Expedition70 #InternationalCooperation #STEM #Education

Astronomers Find Spark of Star Birth Across Billions of Years | NASA Chandra

Astronomers Find Spark of Star Birth Across Billions of Years | NASA Chandra

Astronomers have completed the largest and most detailed study of what triggers stars to form in the universe’s biggest galaxies using NASA’s Chandra X-ray Observatory and other telescopes. They have found, remarkably, that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years.

While there are lots of things that could have affected star formation over the last ten billion years, this new study suggests that the main driver of star formation in these huge galaxies really comes down to one thing—whether or not the hot gas surrounding them can cool off quickly enough.

Clusters of galaxies are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. The mass of this hot gas is several times the total mass of all the stars in all the hundreds of galaxies typically found in galaxy clusters.

The researchers studied the brightest and most massive class of galaxies in the universe, called brightest cluster galaxies, in the centers of 95 clusters of galaxies. The galaxy clusters chosen are themselves an extreme sample—the most massive clusters in a large survey using the South Pole Telescope. The clusters range in location between 3.4 and 9.9 billion light-years from Earth.

The team found that star formation in the galaxies that they studied is triggered when the amount of disordered motion in the hot gas—a physical concept called “entropy”—falls below a critical threshold. Below this threshold, the hot gas inevitably cools to form new stars.

The type of star formation the astronomers are seeing is remarkably consistent. Even though the universe looked very different back billions of years ago, it appears that the trigger for stars to form in these galaxies does not. In the end, a single number could tell us whether billions of stars and planets formed in these huge galaxies, going back ten billion years.


Video Credit: NASA's Chandra X-ray Observatory

Duration: 2 minutes, 30 seconds

Release Date: Jan. 11, 2024


#NASA #Astronomy #Space #Science #Stars #StarFormation #Galaxies #GalaxyClusters #SouthPoleTelescope #NASAChandra #SpaceTelescope #Xrays #Astrophysics #Cosmos #Universe #CfA # #UnitedStates #STEM #Education #HD #Video

Overview of Einstein Probe Mission | China-Europe Scientific Partnership

Overview of Einstein Probe Mission | China-Europe Scientific Partnership

A Long March-2C rocket launched the Einstein Probe (EP) from the Xichang Satellite Launch Center in China's southwestern Sichuan province on January 9, 2024, at 07:03 UTC (15:03 local time). The Einstein Probe (爱因斯坦探针) is a collaboration led by the Chinese Academy of Sciences (CAS) with the European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. The Einstein Probe is equipped with a new generation of X-ray instruments with high sensitivity and a very wide view, designed to observe powerful blasts of X-ray light coming from neutron stars and black holes.

China's newly launched X-ray satellite Einstein Probe (EP) will help scientists further unlock valuable information about the universe by observing distant flashes from cosmic events.

According to the EP mission's official website:

"The Einstein Probe can capture sudden cosmic burst events, or violent activities of celestial bodies. This kind of celestial body that suddenly appears in the universe, lasts for a few moments, and then disappears quickly is called a transient," said Yuan Weimin, chief scientist of the Einstein Probe.

There are many spectacular transients and bursts in the universe from stellar activities near the solar system to gamma ray bursts from the distant early universe. They can generate huge radioactive energy in a very short period of time, concentrated in the X-ray band, producing complex and changing brightness levels like sparkling fireworks. Such transients and bursts originate from the critical stages of the formation and evolution of celestial bodies, and carry key information for studying the universe. However, due to absorption by the Earth's atmosphere, X-rays containing valuable information cannot reach the ground.

"These transients are relatively far away, and their signals are relatively dim. They appear randomly in space. We don't know when and in what direction they appear. So it is difficult for current satellites to detect them, and we need a monitor with very high sensitivity and large field-of-view. That's why we developed the Einstein Probe—to capture these more remote and dimmer transients and bursts," Yuan said.

Learn more about the international Einstein Probe X-ray Mission: 

https://www.mpe.mpg.de/7984975/news20240109


Video Credit: Chinese Academy of Sciences (CAS)/China Central Television (CCTV)

Acknowledgement: SciNews

Duration: 3 minutes

Release Date: Jan. 10, 2024


#NASA #ESA #CAS #Space #Astronomy #Science #Earth #Satellite #EinsteinProbe #爱因斯坦探针 #China #中国 #XichangSatelliteLaunchCenter #SichuanProvince #RocketLaunch #LongMarch2C #Cosmos #Universe #Xray #Transients #MPE #Germany #Deutschland #Europe #STEM #Education #HD #Video

China-Europe Scientific Partnership: Einstein Probe Long March Rocket Launch

China-Europe Scientific Partnership: Einstein Probe Long March Rocket Launch

A Long March-2C rocket launched the Einstein Probe (EP) from the Xichang Satellite Launch Center in China's southwestern Sichuan province on January 9, 2024, at 07:03 UTC (15:03 local time). The Einstein Probe (爱因斯坦探针) is a collaboration led by the Chinese Academy of Sciences (CAS) with the European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. The Einstein Probe is equipped with a new generation of X-ray instruments with high sensitivity and a very wide view, designed to observe powerful blasts of X-ray light coming from neutron stars and black holes.

China's newly launched X-ray satellite Einstein Probe (EP) will help scientists further unlock valuable information about the universe by observing distant flashes from cosmic events.

According to the EP mission's official website:

"The Einstein Probe can capture sudden cosmic burst events, or violent activities of celestial bodies. This kind of celestial body that suddenly appears in the universe, lasts for a few moments, and then disappears quickly is called a transient," said Yuan Weimin, chief scientist of the Einstein Probe.

There are many spectacular transients and bursts in the universe from stellar activities near the solar system to gamma ray bursts from the distant early universe. They can generate huge radioactive energy in a very short period of time, concentrated in the X-ray band, producing complex and changing brightness levels like sparkling fireworks. Such transients and bursts originate from the critical stages of the formation and evolution of celestial bodies, and carry key information for studying the universe. However, due to absorption by the Earth's atmosphere, X-rays containing valuable information cannot reach the ground.

"These transients are relatively far away, and their signals are relatively dim. They appear randomly in space. We don't know when and in what direction they appear. So it is difficult for current satellites to detect them, and we need a monitor with very high sensitivity and large field-of-view. That's why we developed the Einstein Probe—to capture these more remote and dimmer transients and bursts," Yuan said.

Learn more about the international Einstein Probe X-ray Mission: 

https://www.mpe.mpg.de/7984975/news20240109


Video Credit:  Chinese Academy of Sciences (CAS)/China Central Television (CCTV)/China Aerospace Science and Technology Corporation (CASC)/European Space Agency (ESA)

Acknowledgement: SciNews

Duration: 1 minute, 43 seconds

Release Date: Jan. 9, 2024


#NASA #ESA #CAS #Space #Astronomy #Science #Earth #Satellite #EinsteinProbe #爱因斯坦探针 #China #中国 #XichangSatelliteLaunchCenter #SichuanProvince #RocketLaunch #LongMarch2C #Cosmos #Universe #Xray #Transients #MPE #Germany #Deutschland #Europe #STEM #Education #HD #Video

New Year Orbital Sunrise in Earth's Atmosphere | International Space Station

New Year Orbital Sunrise in Earth's Atmosphere | International Space Station

The first rays of an orbital sunrise penetrate Earth's atmosphere in this photograph from the International Space Station as it orbited 263 miles above the Atlantic Ocean off the coast of the Canadian island of Newfoundland.

Follow Expedition 70 Updates:

https://blogs.nasa.gov/spacestation/

Expedition 70 Crew

Station Commander: Andreas Mogensen of the European Space Agency (Denmark)

Roscosmos (Russia): Oleg Kononenko, Nikolai Chub, Konstantin Borisov

JAXA: Flight Engineer Satoshi Furukawa (Japan)

NASA: Jasmin Moghbeli, Loral O'Hara (USA)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation


Credit: NASA's Johnson Space Center (JSC)

Release Date: Jan. 2, 2024


#NASA #Space #Science #ISS #Planet #Earth #Sun #Sunrise #OrbitalSunrise #Atmosphere #AtlanticOcean #Newfoundland #Canada #Astronauts #Cosmonauts #HumanSpaceflight #SpaceTechnology #UnitedStates #Russia #Роскосмос #JAXA #Japan #SpaceResearch #SpaceLaboratory #OverviewEffect #OrbitalPerspective #Expedition70 #InternationalCooperation #STEM #Education

Wednesday, January 10, 2024

The Great Rift: Dust-filled Sky over Cerro Tololo Inter-American Observatory

The Great Rift: Dust-filled Sky over Cerro Tololo Inter-American Observatory

Is that a cosmic crack in the sky? No, it is just the colossal clouds of dust known as the Great Rift! In this stunning image of the Cerro Tololo Inter-American Observatory (CTIO), a Program of the National Science Foundation’s NOIRLab, the Great Rift’s dark clouds appear to slice the Milky Way’s river of starlight in half.

Running vertically through this image, the Great Rift reminds us that our Milky Way is not simply a collection of stars. Our home galaxy is also host to a staggering amount of interstellar dust. In fact, the Great Rift alone contains a million Suns’ worth of it! This opaque cloud complex is made of ultrafine particles around ten times smaller than pollen. Despite their diminutive size, together they can obscure the light from the brightest part of our galaxy. 

Another ‘cloud’ of dust is also visible from this view. Running diagonally downward from the top left of this image is a band of interplanetary dust. Its white glow is known as zodiacal light. Unlike the Great Rift which is dark and far beyond our cosmic neighborhood, this dust is bright and within our Solar System. Its faint white glow is caused by reflected sunlight. To the upper left in the zodiacal light is a triangle of the three planets (from left to right) Venus, Mars and Saturn.

This photo was taken as part of the NOIRLab 2022 Photo Expedition to all the NOIRLab sites. Tomas Slovinský, the photographer, is a NOIRLab Audiovisual Ambassador.


Credit: CTIO/NOIRLab/NSF/AURA/T. Slovinský

Release Date: Jan. 3, 2024


#NASA #Astronomy #Space #Science #Planet #Earth #ZodiacalLight #SolarSystem #Stars #Dust #GreatRift #MilkWayGalaxy #Cosmos #Universe #Telescope #Observatory #NOIRLab #AURA #NSF #CTIO #CerroTololo #Chile #SouthAmerica #UnitedStates #STEM #Education

Beta Pictoris Cat's Tail: Nearby Planetary System Intrigues Astronomers

Beta Pictoris Cat's Tail: Nearby Planetary System Intrigues Astronomers

This is an animation portraying the creation of the cat’s tail, as hypothesized by a team of astronomers. This structure, which is seen in the southwest portion of Beta Pic’s secondary debris disk, is estimated to span 10 billion miles.

Scientists hypothesize that the cat’s tail is the result of a dust production event—like a collision—that occurred a mere one hundred years ago. Initially, the dust created follows the same orbital direction as its source, and then starts to spread out. The star’s light pushes the smallest, fluffiest dust particles away from the star faster, while bigger grains do not move as much, creating a trail of dust.

From an edge-on perspective, the sharp incline of the cat’s tail is an optical illusion. Our perspective along with the curvature of the tail creates the observed angle, while in fact, the tendril of dust is only departing from the disk at a five-degree incline.

Discover even more: https://webbtelescope.pub/3RXt9Nx 


Video Credits:

Animation

NASA, ESA, CSA, STScI, R. Crawford (STScI).

Science

C. Stark (NASA-GSFC), M. Perrin (STScI), I. Rebollido (Astrobiology Center).

Duration: 30 seconds

Release Date: Jan. 10, 2024


#NASA #ESA #Astronomy #Space #Science #Stars #Star #BetaPictoris #PlanetarySystem #Dust #Debris #Pictoris #Constellation #JamesWebb #SpaceTelescope #JWST #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #UnitedStates #STEM #Education #Animation #HD #Video

Webb Discovers Dusty Cat’s Tail in Nearby Beta Pictoris Planetary System

Webb Discovers Dusty Cat’s Tail in Nearby Beta Pictoris Planetary System


Beta Pictoris, a young planetary system located just 63 light-years away, continues to intrigue scientists even after decades of in-depth study. It possesses the first dust disc imaged around another star—a disc of debris produced by collisions between asteroids, comets, and planetesimals. Observations from the NASA/European Space Agency Hubble Space Telescope revealed a second debris disc in this system [1], inclined with respect to the first. Now, a team of astronomers using the NASA/European Space Agency/Canadian Space Agency James Webb Space Telescope to image the Beta Pictoris (Beta Pic) system has discovered a new, previously unseen structure.

The Webb telescope uses a coronagraph—an instrument designed to block out the direct light from a star so that surrounding objects which would otherwise be hidden in the star's glare can be observed.

The team, led by Isabel Rebollido of the Astrobiology Center in Spain, and now an European Space Agency Research Fellow, used Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to investigate the composition of Beta Pic’s previously detected main and secondary debris discs. The results exceeded their expectations, revealing a sharply inclined branch of dust, shaped like a cat’s tail, that extends from the southwest portion of the secondary debris disc.

“Beta Pictoris is the debris disc that has it all: It has a really bright, close star that we can study very well,” said Rebollido. “While there have been previous observations from the ground in this wavelength range, they did not have the sensitivity and the spatial resolution that we now have with Webb, so they didn’t detect this feature.”

A Star’s Portrait Improved with Webb

Even with Webb, peering at Beta Pic in the right wavelength range—in this case, the mid-infrared—was crucial to detect the cat’s tail, as it only appeared in the MIRI data. Webb’s mid-infrared data also revealed differences in temperature between Beta Pic’s two discs, which likely is due to differences in composition.

“We didn’t expect Webb to reveal that there are two different types of material around Beta Pic, but MIRI clearly showed us that the material of the secondary disc and cat’s tail is hotter than the main disc,” said Christopher Stark, a co-author of the study at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The dust that forms that disc and tail must be very dark, so we don’t easily see it at visible or near-infrared wavelengths—but in the mid-infrared, it’s glowing.”

To explain the hotter temperature, the team deduced that the dust may be highly porous “organic refractory material,” similar to the matter found on the surfaces of comets and asteroids in our solar system. For example, a preliminary analysis of material sampled from asteroid Bennu by NASA’s OSIRIS-Rex mission found it to be very dark and carbon-rich, much like what MIRI detected at Beta Pic.

The Tail’s Puzzling Beginning Warrants Future Research

However, a major lingering question remains: What could explain the shape of the cat’s tail, a uniquely curved feature unlike what is seen in discs around other stars?

Rebollido and the team modelled various scenarios in an attempt to emulate the cat’s tail and unravel its origins. Though further research and testing is required, the team presents a strong hypothesis that the cat’s tail is the result of a dust production event that occurred a mere one hundred years ago.

“Something happens—like a collision—and a lot of dust is produced,” shared Marshall Perrin, a co-author of the study at the Space Telescope Science Institute in Baltimore, Maryland. “At first, the dust goes in the same orbital direction as its source, but then it also starts to spread out. The light from the star pushes the smallest, fluffiest dust particles away from the star faster, while the bigger grains do not move as much, creating a long tendril of dust.”

“The cat’s tail feature is highly unusual, and reproducing the curvature with a dynamical model was difficult,” explained Stark. “Our model requires dust that can be pushed out of the system extremely rapidly, which again suggests it’s made of organic refractory material.”

The team’s preferred model explains the sharp angle of the tail away from the disc as a simple optical illusion. Our perspective combined with the curved shape of the tail creates the observed angle of the tail, while in fact, the arc of material is only departing from the disc at a five-degree incline. Taking into consideration the tail’s brightness, the team estimates the amount of dust within the cat’s tail to be equivalent to a large main belt asteroid spread out across 16 billion kilometers.

A recent dust production event within Beta Pic’s debris discs could also explain an asymmetry previously spotted by the Atacama Large Millimeter/submillimeter Array in 2014: a clump of carbon monoxide (CO) located near the cat’s tail. Since the star’s radiation should break down CO within roughly one hundred years, this still-present concentration of gas could be lingering evidence of the same event.

“Our research suggests that Beta Pic may be even more active and chaotic than we had previously thought,” said Stark. “Webb continues to surprise us, even when looking at the most well-studied objects. We have a completely new window into these planetary systems.”

These results were presented in a press conference at the 243rd meeting of the American Astronomical Society in New Orleans, Louisiana.

The observations were taken as part of Guaranteed Time Observation program 1411.

Webb is the largest, most powerful telescope ever launched into space. Under an international collaboration agreement, ESA provided the telescope’s launch service, using the Ariane 5 launch vehicle. Working with partners, ESA was responsible for the development and qualification of Ariane 5 adaptations for the Webb mission and for the procurement of the launch service by Arianespace. ESA also provided the workhorse spectrograph NIRSpec and 50% of the mid-infrared instrument MIRI, which was designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.

Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA).


Image Credit: NASA, ESA, CSA, STScI, C. Stark and K. Lawson (NASA GSFC), J. Kammerer (ESO), and M. Perrin (STScI).

Release Date: Jan. 10, 2024


#NASA #ESA #Astronomy #Space #Science #Stars #Star #BetaPictoris #PlanetarySystem #Dust #Debris #Pictoris #Constellation #JamesWebb #SpaceTelescope #JWST #Cosmos #Universe #UnfoldTheUniverse #Europe #CSA #Canada #GSFC #STScI #UnitedStates #STEM #Education

Supernovae Give Rise to Black Holes or Neutron Stars | ESO

Supernovae Give Rise to Black Holes or Neutron Stars | ESO


ESOcast 269 Light: Astronomers have found a direct link between the explosive deaths of massive stars and the formation of the most compact and enigmatic objects in the Universe—black holes and neutron stars. This video summarizes the discovery. With the help of the European Southern Observatory’s Very Large Telescope (ESO’s VLT) and ESO’s New Technology Telescope (NTT), two teams were able to observe the aftermath of a supernova explosion in a nearby galaxy, finding evidence for the mysterious compact object it left behind.

When massive stars reach the end of their lives, they collapse under their own gravity so rapidly that a violent explosion known as a supernova ensues. Astronomers believe that, after all the excitement of the explosion, what is left is the ultra-dense core, or compact remnant, of the star. Depending on how massive the star is, the compact remnant will be either a neutron star—an object so dense that a teaspoon of its material would weigh around a trillion kilograms here on Earth—or a black hole—an object that nothing, not even light, can escape from.   

Astronomers have found many clues hinting at this chain of events in the past, such as finding a neutron star within the Crab Nebula, the gas cloud left behind when a star exploded nearly a thousand years ago. However, they had never before seen this process happen in real time, meaning that direct evidence of a supernova leaving behind a compact remnant has remained elusive. “In our work, we establish such a direct link,” says Ping Chen, a researcher at the Weizmann Institute of Science, Israel, and lead author of a study published today in Nature and presented at the 243rd American Astronomical Society meeting in New Orleans, USA.

The researchers’ lucky break came in May 2022, when South African amateur astronomer Berto Monard discovered the supernova SN 2022jli in the spiral arm of the nearby galaxy NGC 157, located 75 million light-years away. Two separate teams turned their attention to the aftermath of this explosion and found it to have a unique behavior.

After the explosion, the brightness of most supernovae simply fades away with time; astronomers see a smooth, gradual decline in the explosion’s ‘light curve’. But SN 2022jli’s behavior is very peculiar: as the overall brightness declines, it doesn’t do so smoothly, but instead oscillates up and down every 12 days or so. “In SN 2022jli’s data we see a repeating sequence of brightening and fading,” says Thomas Moore, a doctoral student at Queen’s University Belfast, Northern Ireland, who led a study of the supernova published late last year in the Astrophysical Journal. “This is the first time that repeated periodic oscillations, over many cycles, have been detected in a supernova light curve,” Moore noted in his paper. 

The Moore and Chen teams believe that the presence of more than one star in the SN 2022jli system could explain this behavior. In fact, it is not unusual for massive stars to be in orbit with a companion star in what is known as a binary system, and the star that caused SN 2022jli was no exception. What is remarkable about this system, however, is that the companion star appears to have survived the violent death of its partner and the two objects, the compact remnant and the companion, likely kept orbiting each other.

The data collected by the Moore team, including observations with ESO’s NTT in Chile’s Atacama Desert, did not allow them to pin down exactly how the interaction between the two objects caused the highs and lows in the light curve. Nevertheless, the Chen team had additional observations. They found the same regular fluctuations in the system’s visible brightness that the Moore team had detected, and they also spotted periodic movements of hydrogen gas and bursts of gamma rays in the system. Their observations were made possible thanks to a fleet of instruments on the ground and in space, including X-shooter on ESO's VLT, also located in Chile.

Putting all the clues together, the two teams generally agree that when the companion star interacted with the material thrown out during the supernova explosion, its hydrogen-rich atmosphere became puffier than usual. Then, as the compact object left behind after the explosion zipped through the companion’s atmosphere on its orbit, it would steal hydrogen gas, forming a hot disc of matter around itself. This periodic stealing of matter, or accretion, released lots of energy that was picked up as regular changes of brightness in the observations.

Even though the teams could not observe light coming from the compact object itself, they concluded that this energetic stealing can only be due to an unseen neutron star, or possibly a black hole, attracting matter from the companion star’s puffy atmosphere. “Our research is like solving a puzzle by gathering all possible evidence,” Chen says. “All these pieces lining up lead to the truth.” 

With the presence of a black hole or neutron star confirmed, there is still plenty to unravel about this enigmatic system, including the exact nature of the compact object or what end could await this binary system. Next-generation telescopes such as ESO’s Extremely Large Telescope, scheduled to begin operation later this decade, will help with this, allowing astronomers to reveal unprecedented details of this unique system.


Credit: European Southern Observatory (ESO)

Directed by: Angelos Tsaousis and Martin Wallner

Editing: Angelos Tsaousis

Written by: Tom Howarth and Pamela Freeman

Footage and photos: ESO / Luis Calçada, Martin Kornmesser, Angelos Tsaousis, Alexandre Santerne, Hubble

Scientific consultant: Paola Amico, Mariya Lyubenova

Duration: 1 minute, 29 seconds

Release Date: Jan. 10, 2024


#NASA #ESO #Astronomy #Space #Science #BlackHoles #Stars #NeutronStars #Galaxy #NGC157 #Supernovae #Supernova #SN2022jli #Constellation #VLT #Cosmos #Universe #Astrophysics #Chile #Europe #STEM #Education #HD #Video

Red Sprites Observed near Coast of Turkey | Earth Science

Red Sprites Observed near Coast of Turkey | Earth Science

Photographer Tsouras Panagiotis: "Shown above are red sprites and the rising Moon as captured from Levadia, Greece on November 4, 2023. These high altitude, mysterious sprites are produced by intense thunderstorm cells. They last but a second or two and are generated at altitudes ranging from about 25-55 mi (40-89 km) above the Earth's surface, typically during the mature and decaying stages of large thunderstorm complexes. Under the most favorable conditions they may be observed every few minutes. Note that the storm responsible for this event was near coast of Turkey, more than 200-miles (322 km) east of my location in central Greece. Though they've been seen by the unaided eye, in most cases they're imaged by sensitive cameras."

Technical Details: Sony A7sii camera; 1/25 seconds exposure time; f1.4; ISO 1200.

Sometimes lightning occurs out near space. One such lightning type is red sprite lightning. It has only been photographed and studied on Earth over the past 25 years. The origins of all types of lightning remain topics for research, and scientists are still trying to figure out why red sprite lightning occurs at all. 

Research has shown that following a powerful positive cloud-to-ground lightning strike, red sprites may start as 100-meter balls of ionized air that shoot down from about 80-km high at 10 percent the speed of light. They are quickly followed by a group of upward streaking ionized balls. 


Red Sprites: These mysterious bursts of light in the upper atmosphere momentarily resemble gigantic jellyfish. One unusual feature of sprites is that they are relatively cold. They operate more like long fluorescent light tubes than hot compact light bulbs. In general, red sprites take only a fraction of a second to occur and are best seen when powerful thunderstorms are visible from the side.


Image & Caption Credit: Tsouras Panagiotis  

Caption Acknowledgement: National Aeronautics and Space Administration (NASA)

Location: Levadia, Greece Coordinates: 38.441441, 22.981376

Release Date: Jan. 9, 2024


#NASA #Science #Moon #Planet #Earth #Atmosphere #Weather #Meteorology #Storm #Lightning #RedSprites #Levadia #Greece #Turkey #Türkiye #Photography #TsourasPanagiotis #Photographer #CitizenScience #STEM #Education #EPoD