Saturday, January 13, 2024

Marcus Wandt: Ax-3 Mission Specialist | International Space Station

Marcus Wandt: Ax-3 Mission Specialist | International Space Station

As the first all-European commercial astronaut mission to the International Space Station, Axiom Mission 3 (Ax-3) will "redefine the pathway to low-Earth orbit for nations around the globe." This mission is an opportunity for more countries to join the international space community and access low-Earth orbit to advance exploration and research in microgravity. 

The Ax-3 Mission crew is expected to launch no earlier than Thursday, January 18, 2024, from Kennedy Space Center atop a SpaceX Falcon 9 rocket. Their Dragon Freedom crew spacecraft will have a day-and-a-half-long ride to the International Space Station.

Born 1980 in Sweden, Marcus Wandt has over 20 years of aviation experience with the Swedish Air Force as a fighter pilot, squadron commander, wing commander, and chief test pilot. Previously a member of the European Space Agency (ESA) astronaut reserve, Wandt is now an ESA project astronaut for the duration of his mission duties.

Throughout his academic and professional career, Wandt received various honors and awards for his outstanding performance as a student and pilot. He speaks Swedish and English.

Wandt will be the second ESA astronaut of Swedish nationality to ever go to the International Space Station during Axiom Mission 3 (Ax-3). He will serve as a mission specialist during Ax-3. 

Read his full biography on the Axiom Space website here:


"Axiom Space is guided by the vision of a thriving home in space that benefits every human, everywhere. The leader in providing space infrastructure as a service, Axiom offers end-to-end missions to the International Space Station today while privately developing its successor—a permanent commercial destination in Earth’s orbit that will sustain human growth off the planet and bring untold benefits back home."

More information:  www.axiomspace.com


Credit: Axiom Space

Duration: 2 minutes, 58 seconds

Release Date: Jan. 11, 2024


#NASA #Space #ISS #AxiomSpace #Ax3Mission #Astronauts #MarcusWandt #Sweden #Sverige #Europe #UnitedStates #Science #SpaceResearch #KSC #Florida #International #STEM #Education #HD #Video

Walter Villadei: Ax-3 Mission Pilot | International Space Station

Walter Villadei: Ax-3 Mission Pilot | International Space Station


As the first all-European commercial astronaut mission to the International Space Station, Axiom Mission 3 (Ax-3) will "redefine the pathway to low-Earth orbit for nations around the globe." This mission is an opportunity for more countries to join the international space community and access low-Earth orbit to advance exploration and research in microgravity. 

The Ax-3 Mission crew is expected to launch no earlier than Thursday, January 18, 2024, from Kennedy Space Center atop a SpaceX Falcon 9 rocket. Their Dragon Freedom crew spacecraft will have a day-and-a-half-long ride to the International Space Station.

Born April 1974 in Rome, Italy, Walter Villadei is a colonel in the Italian Air Force (ItAF) and is currently the head of ItAF’s representative office in the U.S., overseeing commercial spaceflight initiatives. He has extensive experience in Italian space programs, including multiple assignments as a member of the scientific committee of the Italian Space Agency and national representative for the European Commission for the Space Surveillance and Tracking Program. 

In 2011, Villadei received cosmonaut training in Star City, Russia as a Soyuz flight engineer and in advanced Orlan and International Space Station (ISS) Russian segment systems. In 2014 and 2018, he completed pre-assignment and multiple analog training, which included centrifuge, hypoxia chamber, and survival training.

In 2021, Villadei was selected to fly on Virgin Galactic’s rocket-powered flight, Unity 23, the first commercial, human-tended research mission for the company. The mission Vitute-1 was carried out in June 2023, and the crew conducted 12 experiments aboard Unity 23, to include materials, technology, and human physiology research. Villadei served as mission lead and tended to the rack-mounted payloads during the weightless portion of the flight while wearing a smart suit to measure his physiological responses.

Villadei has a Master's Degree in Aerospace Engineering from the University of Naples and a specialization in astronautical engineering from the University of Rome.

He is fluent in reading, writing, and speaking in English and his native Italian, along with extensive experience speaking Russian.

With a love for space, stars, aviation, and science combined with Russian cosmonaut and Italian Air Force training, Villadei is honored to have been chosen as the pilot for Axiom Space’s third commercial astronaut mission to the ISS, Axiom Mission 3 (Ax-3).

Read his full biography on the Axiom Space website here: 

https://www.axiomspace.com/astronaut/walter-villadei

"Axiom Space is guided by the vision of a thriving home in space that benefits every human, everywhere. The leader in providing space infrastructure as a service, Axiom offers end-to-end missions to the International Space Station today while privately developing its successor—a permanent commercial destination in Earth’s orbit that will sustain human growth off the planet and bring untold benefits back home."

More information:  www.axiomspace.com


Credit: Axiom Space

Duration: 2 minutes, 51 seconds

Release Date: Jan. 11, 2024


#NASA #Space #ISS #AxiomSpace #Ax3Mission #Ax3 #SpaceX #CrewDragonSpacecraft #Falcon9Rocket #CommercialSpace #Astronauts #WalterVilladei #Pilot #Italy #Italia #Europe #UnitedStates #Science #SpaceResearch #KSC #Florida #International #STEM #Education #HD #Video 

Michael López-Alegría: Ax-3 Mission Commander | International Space Station

Michael López-Alegría: Ax-3 Mission Commander | International Space Station

As the first all-European commercial astronaut mission to the International Space Station, Axiom Mission 3 (Ax-3) will "redefine the pathway to low-Earth orbit for nations around the globe." This mission is an opportunity for more countries to join the international space community and access low-Earth orbit to advance exploration and research in microgravity. 

The Ax-3 Mission crew is expected to launch no earlier than Thursday, January 18, 2024, from Kennedy Space Center atop a SpaceX Falcon 9 rocket. Their Dragon Freedom crew spacecraft will have a day-and-a-half-long ride to the International Space Station.

Michael López-Alegría was born in Madrid, Spain, and immigrated to the U.S. as a young boy with his family. He has over 40 years of aviation and space experience with the U.S. Navy and NASA in a variety of roles, including Naval Aviator, engineering test pilot, NASA astronaut, and commander of the International Space Station (ISS).
Read his full biography on the Axiom Space website here:

Former astronaut Michael López-Alegría's official NASA biography: 

"Axiom Space is guided by the vision of a thriving home in space that benefits every human, everywhere. The leader in providing space infrastructure as a service, Axiom offers end-to-end missions to the International Space Station today while privately developing its successor—a permanent commercial destination in Earth’s orbit that will sustain human growth off the planet and bring untold benefits back home."

More information:  www.axiomspace.com


Credit: Axiom Space

Duration: 2 minutes, 42 seconds

Release Date: Jan. 11, 2024


#NASA #Space #ISS #AxiomSpace #Ax3Mission #Ax3 #SpaceX #CrewDragonSpacecraft #Falcon9Rocket #CommercialSpace #Astronauts #MichaelLópezAlegría #Spain #Espana #Europe #UnitedStates #Science #SpaceResearch #KSC #Florida #International #STEM #Education #HD #Video

Rollout of NASA's Experimental Supersonic X-59 Plane | This Week @NASA

Rollout of NASA's Experimental Supersonic X-59 Plane | This Week @NASA 

Week of January 12, 2024: Rollout of NASA's experimental supersonic X-59 aircraft, schedule updates for future Artemis missions, and another year of global record heat . . . a few of the stories to tell you about —This Week at NASA!


Credit: National Aeronautics and Space Administration (NASA)

Video Producer & Video Editor: Andre Valentine

Narrator: Emanuel Cooper

Duration: 3 minutes

Release Date: Jan. 13, 2024


#NASA #Space #AretmisProgram #Earth #Moon #Aerospace #SupersonicFlight #SupersonicAircraft #X59 #Sonicbooms #QuietAviation #Aviation #QuesstMission #CommercialAviation #Science #Engineering #AerospaceResearch #NASAArmstrong #EdwardsAFB #California #UnitedStates #STEM #Education #HD #Video

The Cave Nebula: Sharpless 2-155 in Cepheus

The Cave Nebula: Sharpless 2-155 in Cepheus


This image was obtained with the wide-field view of the Mosaic camera on the 4-meter Mayall Telescope at Kitt Peak National Observatory. Sh2-155, informally known as the "cave nebula," is a dark cloud of gas embedded in a giant emission nebula. The top edge of the cloud is illuminated by several hot, massive (OB) stars that are part of the Cepheus OB3 association. The image was generated with observations in Hydrogen alpha (red), Sulphur [S II] (blue) and I (orange) filters. In this image, North is left, East is down.

The Nicholas U. Mayall Telescope is a four-meter (158-inch) reflector telescope in Arizona named after the American observational astronomer of the same name. The telescope saw first light on February 27, 1973, and was the second-largest in the world at that time.


Credit: T.A. Rector (University of Alaska Anchorage) and H. Schweiker (WIYN and NOIRLab/NSF/AURA)

Release Date: June 30, 2020


#NASA #Astronomy #Space #Science #Nebulae #Nebula #CaveNebula #Sh2155 #EmissionNebula #Cepheus #Constellation #MilkyWayGalaxy #Cosmos #Universe #KittPeakNationalObservatory #KPNO #MayallTelescope #Arizona #NSF #AURA #UnitedStates #STEM #Education

Friday, January 12, 2024

NASA’s X-59 Quiet Supersonic Aircraft Prepares for First Flight

NASA’s X-59 Quiet Supersonic Aircraft Prepares for First Flight

NASA and Lockheed Martin Skunk Works recently unveiled the X-59 experimental aircraft, designed and built to reduce a loud sonic boom, associated with faster-than-sound flight, to a quiet sonic thump. The X-59 now moves closer to its first flight —a step toward making commercial supersonic flight over land a reality for everyone. Researchers on NASA’s Quesst mission will work to understand people’s reactions to the X-59’s thump and give that data to regulators, who will then consider writing new sound-based rules to lift the ban on commercial supersonic flight over land.

The X-59 is the centerpiece of NASA’s Quesst mission that seeks to solve one of the major barriers to supersonic flight over land, currently banned in the United States, by making sonic booms quieter.

NASA’s X-59 quiet supersonic research aircraft is the product of decades of aeronautics and supersonic flight research. The X-59 is designed to be able to fly supersonic, or faster than the speed of sound, without producing a loud sonic boom, which occurs when aircraft fly at such speeds. Instead, the X-59 is designed to reduce that boom to a quieter sonic “thump.” 

The X-59's goal is to help change existing national and international aviation rules that ban commercial supersonic flight over land.

Learn more here:

https://www.nasa.gov/flightlog

X-59 Free Maker Bundle (STEM Education):

https://www.nasa.gov/sites/default/files/atoms/files/x-59-maker-bundle-v8.pdf

Hablas español? Visita: https://ciencia.nasa.gov/el-x-59-se-asemeja-una-aeronave-real para aprender mas sobre la mision Quesst

 

Video Credit: National Aeronautics and Space Administration (NASA)

Producers: Sami Aziz, Blair Allen

Editor: Ryan Darden

Color Grading: Ron Beard

Videographers: Lori Losey, Jacob Shaw, and Lockheed Martin

Duration: 1 minute

Release Date: Jan. 12, 2024


#NASA #Aerospace #SupersonicFlight #SupersonicAircraft #X59 #Sonicboom #QuietAviation #Aviation #QuesstMission #CommercialAviation #Science #Physics #Engineering #AerospaceResearch #AeronauticalResearch #FlightTests #LockheedMartin #NASAArmstrong #AFRC #EdwardsAFB #California #UnitedStates #STEM #Education #HD #Video

NASA’s X-59 Supersonic Aircraft: Rollout Day | The Quesst Mission

NASA’s X-59 Supersonic Aircraft: Rollout Day | The Quesst Mission

This is the X-59, a single-seat X-plane aiming to reduce the sound of the sonic boom to a mere thump. It opens the possibility for commercial supersonic flights over land, which has been prohibited since 1973. Be on the lookout for first flight! NASA’s X-59 quiet supersonic research aircraft image released for rollout day, Jan. 12, 2024. (This not a "render.") 


NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California during sunrise, shortly after completion of painting. With its unique design, including a 38-foot-long nose, the X-59 was built to demonstrate the ability to fly supersonic, or faster than the speed of sound, while reducing the typically loud sonic boom produced by aircraft at such speeds to a quieter sonic “thump”. 

The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land, currently banned in the United States, by making sonic booms quieter.

NASA’s X-59 quiet supersonic research aircraft is the product of decades of aeronautics and supersonic flight research. The X-59 is designed to be able to fly supersonic, or faster than the speed of sound, without producing a loud sonic boom, which occurs when aircraft fly at such speeds. Instead, the X-59 is designed to reduce that boom to a quieter sonic “thump.” 

The X-59's goal is to help change existing national and international aviation rules that ban commercial supersonic flight over land.

Learn more here:

https://www.nasa.gov/flightlog

X-59 Free Maker Bundle (STEM Education):

https://www.nasa.gov/sites/default/files/atoms/files/x-59-maker-bundle-v8.pdf

Hablas español? Visita: https://ciencia.nasa.gov/el-x-59-se-asemeja-una-aeronave-real para aprender mas sobre la mision Quesst


Image Credit: NASA/Steve Freeman/Lockheed Martin

Image Dates: Jan 12, 2024 & Dec. 12, 2023


#NASA #Aerospace #SupersonicFlight #SupersonicAircraft #X59 #Sonicboom #QuietAviation #Aviation #QuesstMission #CommercialAviation #Science #Physics #Engineering #AerospaceResearch #AeronauticalResearch #FlightTests #LockheedMartin #NASAArmstrong #AFRC #EdwardsAFB #California #UnitedStates #STEM #Education

2023 Was the Hottest Year on Record | NASA Goddard

2023 Was the Hottest Year on Record | NASA Goddard

2023 was Earth’s warmest year since 1880, and the last 10 consecutive years have been the warmest 10 on record. Why does NASA, a space agency, look at Earth’s temperature? And how do we even measure global temperature? 


Credit: NASA's Goddard Space Flight Center

Kathleen Gaeta (NASA ROTHE): Lead Producer, Lead Videographer, Writer, Editor

Gavin Schmidt (NASA GISS): Lead Scientist

Peter Jacobs (NASA GSFC): Supporting Scientist

Grace Weikert (GSFC ROTHE): Associate Producer

Katie Jepson (GSFC KBR): Associate Producer

Mark Subbarao (NASA GSFC): Lead Visualizer

Krystofer Kim (GSFC ROTHE): Lead Graphics Animator

Duration: 9 minutes

Release Date: Jan. 12, 2024


#NASA #Space #Satellites #Science #Planet #Earth #Year2023 #GlobalTemperatureRecords #Weather #Meteorology #ClimateChange #GlobalHeating #Climate #Environment #InSituMeasurements #GlobalTemperatureMap #GreenhouseGases #GHG #EarthObservation #RemoteSensing #NASAGISS  #GSFC #UnitedStates #STEM #Education #HD #Video

NASA's Space to Ground: Laser Link | Week of Jan. 12, 2024

NASA's Space to Ground: Laser Link Week of Jan. 12, 2024

NASA's Space to Ground is your weekly update on what is happening aboard the International Space Station. Four private astronauts representing the United States, Italy, Turkey, and Sweden are scheduled to launch to the station aboard the SpaceX Dragon Freedom spacecraft at 5:11 p.m. EST on Jan. 17, 2024. The Axiom Mission 3 (Ax-3) quartet, commanded by Michael Lopez-Alegria from the U.S. and piloted by Walter Villadei from Italy, will dock to the Harmony module’s forward port at 5:15 a.m. on Jan. 19. The duo will be joined by Ax-3 Mission Specialists Alper Gezeravci from Turkey and Marcus Wandt from Sweden for two weeks of research and education activities aboard the orbital outpost.

Follow Expedition 70 Updates:

https://blogs.nasa.gov/spacestation/

Expedition 70 Crew

Station Commander: Andreas Mogensen of the European Space Agency (Denmark)

Roscosmos (Russia): Oleg Kononenko, Nikolai Chub, Konstantin Borisov

JAXA: Flight Engineer Satoshi Furukawa (Japan)

NASA: Jasmin Moghbeli, Loral O'Hara (USA)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation


Video Credit: NASA's Johnson Space Center (JSC)

Duration: 3 minutes, 18 seconds

Release Date: Jan 12, 2024 


#NASA #Space #ISS #Science #LaserCommunications #AxiomSpace #Ax3Mission #Astronauts #LoralOHara #JasminMoghbeli #UnitedStates #AndreasMogensen #Denmark #Danmark #Europe #SatoshiFurukawa #JAXA #Japan #日本 #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #Expedition70 #STEM #Education #HD #Video

Planet Mars: Isolated Araneiform Topography | NASA Mars Reconnaissance Orbiter

Planet Mars: Isolated Araneiform Topography | NASA Mars Reconnaissance Orbiter

Have you ever found that to describe something you had to go to the dictionary and search for just the right word?

The South Polar terrain of Mars is so full of unearthly features that we had to visit Mr. Webster to find a suitable term. “Araneiform” means “spider-like.” These are channels that are carved in the surface by carbon dioxide gas. We do not have this process on Earth.

The channels are somewhat radially organized and widen and deepen as they converge. In the past we have just referred to them as “spiders.” “Isolated araneiform topography” means that our features look like spiders that are not in contact with each other.

Image cutout is less than 1 km (under 1 mi) across and the spacecraft altitude was 244 km (152 mi).

The University of Arizona, Tucson, operates the High Resolution Imaging Science Experiment (HiRISE) instrument, that was built by Ball Aerospace & Technologies Corp., Boulder, Colorado. 

NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.

“For 17 years, MRO has been revealing Mars to us as no one had seen it before,” said the mission’s project scientist, Rich Zurek of JPL.


Image Credit: NASA/JPL-Caltech/University of Arizona

Release Date: Jan. 10, 2024


#NASA #Space #Astronomy #Mars #Planet #RedPlanet #Science #Geology #Landscape #Terrain #Geoscience #SouthPole #Araneiform #Topography #CO2Gas #MRO #Orbiter #Spacecraft #HiRISE #Camera #JPL #Caltech #UArizona #BallAerospace #STEM #Education 

Gravity-1: China's 'Most Powerful' Solid-fuel Commercial Rocket Explained

Gravity-1: China's 'Most Powerful' Solid-fuel Commercial Rocket Explained

The first launch of the Gravity-1 solid-fueled rocket took place from a sea-based platform off the coast of Haiyang, Shandong Province, China, on January 11, 2024, at 05:30 UTC (13:30 local time). Gravity-1 was designed by the Chinese aerospace company OrienSpace to launch payloads of up to 6.5 tons to low-Earth orbit (LEO), up to 4.2 tons to a 500km Sun-synchronous orbit (SSO) or up to 3.7 tons to a 700km Sun-synchronous orbit (SSO). It is nearly twice as heavy as the European Space Agency’s Vega-C, the previous record holder.

Gravity-1 successfully launched three Yunyao-1 satellites. The Yunyao-1 satellites are for Tianjin, China-based Yunyao Yuhang. Yunyao plans to construct a satellite constellation to provide data for global weather forecasting.

OrienSpace's launch of China's most powerful commercial solid-fuel rocket is a coup for the country's private aerospace sector. Gravity-1 represents a 'significant advancement in independent innovation within China’s commercial carrier rockets’, according to the official Aerospace China newspaper.

Gravity-1 has a thrust of 600 tonnes and can lift 6.5 tonnes of cargo into near Earth orbit. The rocket’s cargo compartment—4.2 meters in diameter and 9 meters tall (13.7 by 30 feet)—is spacious enough to accommodate cargo for the China Space Station, if needed. The Gravity-1 rocket can support the launch of up to 30 satellites weighing 100kg (220lbs) each, according to Aerospace China. The Gravity-1 consists of seven solid rocket motors. The bundling and separation of large solid rocket boosters has been a challenge around the world.

The Gravity-1 Mission was the fourth Chinese orbital launch of 2024 as of Jan. 11. It followed shortly after a Kuaizhou-1A solid rocket launch Jan. 11 (UTC) and the Jan. 9 launch of the China-Europe Einstein Probe.

OrienSpace has not disclosed the cost of its first launch, but chief operating officer Wei Kai said the company had adopted a series of measures to establish a large-scale, convenient and low-cost launch service model.

Its factory in Haiyang will achieve an annual production capacity of 20 rockets, he said.

The use of solid fuel is "convenient and safe." It allows for the process of rocket assembly, testing and launch to be completed within a 5km radius, significantly reducing production time and cost.

Offshore launches offer additional advantages in terms of safety and frequency with potential for weekly launch missions using a single vessel, according to OrienSpace.

Wei told Aerospace China the Gravity-1 rocket structure was designed for rapid mass production. Its core and boosters have the same diameter, simplifying the manufacturing process and significantly improving manufacturing efficiency, while cutting production costs.

Chief designer Bu Xiangwei said the firm’s improvements—such as enclosing the rocket in a white protective cover before transport and launch—had saved considerable costs.

The flexible cover kept the rocket’s temperature at around 15 degrees Celsius in winter and isolated external rain and snow.

“Through such an inflatable protective cover, we can achieve a low-cost and simplified environmental support system for carrier rockets,” Bu said, according to Aerospace China.

“The juncture where the rocket booster meets the core stage, no larger than an A4 sheet of paper, must endure a force of roughly 200 tonnes,” said Yao Song, the co-CEO of OrienSpace.

“Its strength must be matched also by its simplicity, ensuring a clean break when the time comes.

“This, indeed, showcases the depth of our technological expertise.”

Behind this feat stands a team of about 100 scientists and engineers who spent about three years carrying out 23 large-scale ground tests of the rocket system, 489 tests of individual components and 1,452 iteration tests to improve the rocket’s overall performance.

As China embarks on an ambitious plan to build a constellation of 13,000 satellites to rival SpaceX’s Starlink, the need for reliable and cost-effective launch vehicles is paramount. Many commercial aerospace companies are eyeing this lucrative opportunity.

OrienSpace said it aimed to achieve liquid rocket recyclability and reusability within two years, increasing its carrying capacity to 15-20 tonnes and further driving down costs.


Video Credits: China Central Television (CCTV)/China Global Television Network (CGTN)/OrienSpace

Acknowledgements: SciNews/SCMP/SpaceNews

Duration: 3 minute

Release Date: Jan. 12, 2024


#NASA #Space #Satellites #Earth #China #中国 #OrienSpace #东方空间 #SeaLaunch #Haiyang #ShandongProvince #RocketLaunch #Gravity1 #引力1号 #SolidFuelRocket #Yunyao1 #CommercialSpace #Spaceflight #SpaceTechnology #Aerospace #AerospaceEngineering #History #STEM #Education #HD #Video

Gravity-1: Launch of China's 'Most Powerful' Solid-Fuel Commercial Rocket

Gravity-1: Launch of China's 'Most Powerful' Solid-Fuel Commercial Rocket

The first launch of the Gravity-1 solid-fueled rocket took place from a sea-based platform off the coast of Haiyang, Shandong Province, China, on January 11, 2024, at 05:30 UTC (13:30 local time). Gravity-1 was designed by the Chinese aerospace company OrienSpace to launch payloads of up to 6.5 tons to low-Earth orbit (LEO), up to 4.2 tons to a 500km Sun-synchronous orbit (SSO) or up to 3.7 tons to a 700km Sun-synchronous orbit (SSO). It is nearly twice as heavy as the European Space Agency’s Vega-C, the previous record holder.

Gravity-1 successfully launched three Yunyao-1 satellites. The Yunyao-1 satellites are for Tianjin, China-based Yunyao Yuhang. Yunyao plans to construct a satellite constellation to provide data for global weather forecasting.

OrienSpace's launch of China's most powerful commercial solid-fuel rocket is a coup for the country's private aerospace sector. Gravity-1 represents a 'significant advancement in independent innovation within China’s commercial carrier rockets’, according to the official Aerospace China newspaper.

Gravity-1 has a thrust of 600 tonnes and can lift 6.5 tonnes of cargo into near Earth orbit. The rocket’s cargo compartment—4.2 meters in diameter and 9 meters tall (13.7 by 30 feet)—is spacious enough to accommodate cargo for the China Space Station, if needed. The Gravity-1 rocket can support the launch of up to 30 satellites weighing 100kg (220lbs) each, according to Aerospace China. The Gravity-1 consists of seven solid rocket motors. The bundling and separation of large solid rocket boosters has been a challenge around the world.

The Gravity-1 Mission was the fourth Chinese orbital launch of 2024 as of Jan. 11. It followed shortly after a Kuaizhou-1A solid rocket launch Jan. 11 (UTC) and the Jan. 9 launch of the China-Europe Einstein Probe.

OrienSpace has not disclosed the cost of its first launch, but chief operating officer Wei Kai said the company had adopted a series of measures to establish a large-scale, convenient and low-cost launch service model.

Its factory in Haiyang will achieve an annual production capacity of 20 rockets, he said.

The use of solid fuel is "convenient and safe." It allows for the process of rocket assembly, testing and launch to be completed within a 5km radius, significantly reducing production time and cost.

Offshore launches offer additional advantages in terms of safety and frequency with potential for weekly launch missions using a single vessel, according to OrienSpace.

Wei told Aerospace China the Gravity-1 rocket structure was designed for rapid mass production. Its core and boosters have the same diameter, simplifying the manufacturing process and significantly improving manufacturing efficiency, while cutting production costs.

Chief designer Bu Xiangwei said the firm’s improvements—such as enclosing the rocket in a white protective cover before transport and launch—had saved considerable costs.

The flexible cover kept the rocket’s temperature at around 15 degrees Celsius in winter and isolated external rain and snow.

“Through such an inflatable protective cover, we can achieve a low-cost and simplified environmental support system for carrier rockets,” Bu said, according to Aerospace China.

“The juncture where the rocket booster meets the core stage, no larger than an A4 sheet of paper, must endure a force of roughly 200 tonnes,” said Yao Song, the co-CEO of OrienSpace.

“Its strength must be matched also by its simplicity, ensuring a clean break when the time comes.

“This, indeed, showcases the depth of our technological expertise.”

Behind this feat stands a team of about 100 scientists and engineers who spent about three years carrying out 23 large-scale ground tests of the rocket system, 489 tests of individual components and 1,452 iteration tests to improve the rocket’s overall performance.

As China embarks on an ambitious plan to build a constellation of 13,000 satellites to rival SpaceX’s Starlink, the need for reliable and cost-effective launch vehicles is paramount. Many commercial aerospace companies are eyeing this lucrative opportunity.

OrienSpace said it aimed to achieve liquid rocket recyclability and reusability within two years, increasing its carrying capacity to 15-20 tonnes and further driving down costs.


Video Credit: China Central Television (CCTV)/OrienSpace

Acknowledgements: SciNews/SCMP/SpaceNews

Duration: 1 minute

Release Date: Jan. 11, 2024


#NASA #Space #Satellites #Earth #China #中国 #OrienSpace #东方空间 #SeaLaunch #Haiyang #ShandongProvince #RocketLaunch #Gravity1 #引力1号 #SolidFuelRocket #Yunyao1 #CommercialSpace #Spaceflight #SpaceTechnology #Aerospace #AerospaceEngineering #History #STEM #Education #HD #Video

Thursday, January 11, 2024

City Lights of North America, Earth Airglow & Stars | International Space Station

City Lights of North America, Earth Airglow & Stars | International Space Station


The city lights of North America appear under Earth's airglow and a starry night sky in this photograph from the International Space Station as it orbited 262 miles above North Dakota.
Airglow occurs when atoms and molecules in the upper atmosphere, excited by sunlight, emit light to shed their excess energy. Or, it can happen when atoms and molecules that have been ionized by sunlight collide with and capture a free electron. In both cases, they eject a particle of light—called a photon—in order to relax again. The phenomenon is similar to auroras, but where auroras are driven by high-energy particles originating from the solar wind, airglow is energized by ordinary, day-to-day solar radiation.

Unlike auroras, which are episodic and fleeting, airglow constantly shines throughout Earth’s atmosphere, and the result is a tenuous bubble of light that closely encases our entire planet. (Auroras, on the other hand, are usually constrained to Earth’s poles.) Just a tenth as bright as all the stars in the night sky, airglow is far more subdued than auroras, too dim to observe easily except in orbit or on the ground with clear, dark skies and a sensitive camera. However, it is a marker nevertheless of the dynamic region where Earth meets space . . .

Follow Expedition 70 Updates:

https://blogs.nasa.gov/spacestation/

Expedition 70 Crew

Station Commander: Andreas Mogensen of the European Space Agency (Denmark)

Roscosmos (Russia): Oleg Kononenko, Nikolai Chub, Konstantin Borisov

JAXA: Flight Engineer Satoshi Furukawa (Japan)

NASA: Jasmin Moghbeli, Loral O'Hara (USA)

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation


Credit: NASA's Johnson Space Center (JSC)

Image Date: Jan. 10, 2024


#NASA #Space #Science #ISS #Stars #Planet #Earth #Airglow #Atmosphere #NorthAmerica #UnitedStates #Canada #Astronauts #Cosmonauts #HumanSpaceflight #SpaceTechnology #UnitedStates #Russia #Роскосмос #JAXA #Japan #SpaceResearch #SpaceLaboratory #OverviewEffect #OrbitalPerspective #Expedition70 #InternationalCooperation #STEM #Education

Astronomers Find Spark of Star Birth Across Billions of Years | NASA Chandra

Astronomers Find Spark of Star Birth Across Billions of Years | NASA Chandra

Astronomers have completed the largest and most detailed study of what triggers stars to form in the universe’s biggest galaxies using NASA’s Chandra X-ray Observatory and other telescopes. They have found, remarkably, that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years.

While there are lots of things that could have affected star formation over the last ten billion years, this new study suggests that the main driver of star formation in these huge galaxies really comes down to one thing—whether or not the hot gas surrounding them can cool off quickly enough.

Clusters of galaxies are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. The mass of this hot gas is several times the total mass of all the stars in all the hundreds of galaxies typically found in galaxy clusters.

The researchers studied the brightest and most massive class of galaxies in the universe, called brightest cluster galaxies, in the centers of 95 clusters of galaxies. The galaxy clusters chosen are themselves an extreme sample—the most massive clusters in a large survey using the South Pole Telescope. The clusters range in location between 3.4 and 9.9 billion light-years from Earth.

The team found that star formation in the galaxies that they studied is triggered when the amount of disordered motion in the hot gas—a physical concept called “entropy”—falls below a critical threshold. Below this threshold, the hot gas inevitably cools to form new stars.

The type of star formation the astronomers are seeing is remarkably consistent. Even though the universe looked very different back billions of years ago, it appears that the trigger for stars to form in these galaxies does not. In the end, a single number could tell us whether billions of stars and planets formed in these huge galaxies, going back ten billion years.


Video Credit: NASA's Chandra X-ray Observatory

Duration: 2 minutes, 30 seconds

Release Date: Jan. 11, 2024


#NASA #Astronomy #Space #Science #Stars #StarFormation #Galaxies #GalaxyClusters #SouthPoleTelescope #NASAChandra #SpaceTelescope #Xrays #Astrophysics #Cosmos #Universe #CfA # #UnitedStates #STEM #Education #HD #Video

Overview of Einstein Probe Mission | China-Europe Scientific Partnership

Overview of Einstein Probe Mission | China-Europe Scientific Partnership

A Long March-2C rocket launched the Einstein Probe (EP) from the Xichang Satellite Launch Center in China's southwestern Sichuan province on January 9, 2024, at 07:03 UTC (15:03 local time). The Einstein Probe (爱因斯坦探针) is a collaboration led by the Chinese Academy of Sciences (CAS) with the European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. The Einstein Probe is equipped with a new generation of X-ray instruments with high sensitivity and a very wide view, designed to observe powerful blasts of X-ray light coming from neutron stars and black holes.

China's newly launched X-ray satellite Einstein Probe (EP) will help scientists further unlock valuable information about the universe by observing distant flashes from cosmic events.

According to the EP mission's official website:

"The Einstein Probe can capture sudden cosmic burst events, or violent activities of celestial bodies. This kind of celestial body that suddenly appears in the universe, lasts for a few moments, and then disappears quickly is called a transient," said Yuan Weimin, chief scientist of the Einstein Probe.

There are many spectacular transients and bursts in the universe from stellar activities near the solar system to gamma ray bursts from the distant early universe. They can generate huge radioactive energy in a very short period of time, concentrated in the X-ray band, producing complex and changing brightness levels like sparkling fireworks. Such transients and bursts originate from the critical stages of the formation and evolution of celestial bodies, and carry key information for studying the universe. However, due to absorption by the Earth's atmosphere, X-rays containing valuable information cannot reach the ground.

"These transients are relatively far away, and their signals are relatively dim. They appear randomly in space. We don't know when and in what direction they appear. So it is difficult for current satellites to detect them, and we need a monitor with very high sensitivity and large field-of-view. That's why we developed the Einstein Probe—to capture these more remote and dimmer transients and bursts," Yuan said.

Learn more about the international Einstein Probe X-ray Mission: 

https://www.mpe.mpg.de/7984975/news20240109


Video Credit: Chinese Academy of Sciences (CAS)/China Central Television (CCTV)

Acknowledgement: SciNews

Duration: 3 minutes

Release Date: Jan. 10, 2024


#NASA #ESA #CAS #Space #Astronomy #Science #Earth #Satellite #EinsteinProbe #爱因斯坦探针 #China #中国 #XichangSatelliteLaunchCenter #SichuanProvince #RocketLaunch #LongMarch2C #Cosmos #Universe #Xray #Transients #MPE #Germany #Deutschland #Europe #STEM #Education #HD #Video

China-Europe Scientific Partnership: Einstein Probe Long March Rocket Launch

China-Europe Scientific Partnership: Einstein Probe Long March Rocket Launch

A Long March-2C rocket launched the Einstein Probe (EP) from the Xichang Satellite Launch Center in China's southwestern Sichuan province on January 9, 2024, at 07:03 UTC (15:03 local time). The Einstein Probe (爱因斯坦探针) is a collaboration led by the Chinese Academy of Sciences (CAS) with the European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. The Einstein Probe is equipped with a new generation of X-ray instruments with high sensitivity and a very wide view, designed to observe powerful blasts of X-ray light coming from neutron stars and black holes.

China's newly launched X-ray satellite Einstein Probe (EP) will help scientists further unlock valuable information about the universe by observing distant flashes from cosmic events.

According to the EP mission's official website:

"The Einstein Probe can capture sudden cosmic burst events, or violent activities of celestial bodies. This kind of celestial body that suddenly appears in the universe, lasts for a few moments, and then disappears quickly is called a transient," said Yuan Weimin, chief scientist of the Einstein Probe.

There are many spectacular transients and bursts in the universe from stellar activities near the solar system to gamma ray bursts from the distant early universe. They can generate huge radioactive energy in a very short period of time, concentrated in the X-ray band, producing complex and changing brightness levels like sparkling fireworks. Such transients and bursts originate from the critical stages of the formation and evolution of celestial bodies, and carry key information for studying the universe. However, due to absorption by the Earth's atmosphere, X-rays containing valuable information cannot reach the ground.

"These transients are relatively far away, and their signals are relatively dim. They appear randomly in space. We don't know when and in what direction they appear. So it is difficult for current satellites to detect them, and we need a monitor with very high sensitivity and large field-of-view. That's why we developed the Einstein Probe—to capture these more remote and dimmer transients and bursts," Yuan said.

Learn more about the international Einstein Probe X-ray Mission: 

https://www.mpe.mpg.de/7984975/news20240109


Video Credit:  Chinese Academy of Sciences (CAS)/China Central Television (CCTV)/China Aerospace Science and Technology Corporation (CASC)/European Space Agency (ESA)

Acknowledgement: SciNews

Duration: 1 minute, 43 seconds

Release Date: Jan. 9, 2024


#NASA #ESA #CAS #Space #Astronomy #Science #Earth #Satellite #EinsteinProbe #爱因斯坦探针 #China #中国 #XichangSatelliteLaunchCenter #SichuanProvince #RocketLaunch #LongMarch2C #Cosmos #Universe #Xray #Transients #MPE #Germany #Deutschland #Europe #STEM #Education #HD #Video