Friends of NASA (FoN) is an independent non-governmental organization (NGO) dedicated to building international support for peaceful space exploration, commerce, scientific discovery, and STEM education.
Tuesday, June 11, 2024
Mars Images: June 2024 | NASA Mars Curiosity & Perseverance Rovers
Boeing's Starliner Crew Spacecraft Approaches the International Space Station
Boeing's Starliner Crew Spacecraft Approaches the International Space Station
NASA’s Commercial Crew Program works with the American aerospace industry to provide safe, reliable, and cost-effective transportation to and from the orbital outpost on American-made rockets and spacecraft launching from American soil.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
Image Credit: NASA's Johnson Space Center (JSC)
Image Date: June 6, 2024
#NASA #Space #Earth #ISS #KiboLaboratory #Japan #日本 #JAXA #Boeing #Starliner #CST100 #CommercialCrewProgram #CFT #Astronauts #SuniWilliams #BarryWilmore #HumanSpaceflight #SpaceTechnology #Engineering #LaunchAmerica #CommercialSpace #UnitedStates #STEM #Education
NASA Astronaut Suni Williams Answers Student Questions | International Space Station
NASA Astronaut Suni Williams Answers Student Questions | International Space Station
NASA astronaut Suni Williams discussed living and working in space as part of the Crewed Flight Test (CFT) of the Boeing Starliner spacecraft during an in-flight interview with the Sunita L. Williams Elementary School in Needham, Massachusetts on June 10, 2024.
Williams is an alumnus of the school and is the midst of completing a test flight to check out Starliner’s systems ahead of spacecraft certification. Williams will remain at the space station for about a week to complete a series of test objectives before departing the complex for a landing in the southwestern United States alongside NASA astronaut Butch Wilmore.
For more info on CFT and Starliner, visit: boeing.com/starliner
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
Video Credit: NASA's Johnson Space Center (JSC)
Duration: 25 minutes
Astronauts Selected for China's Crewed Moon Missions: Chief Designer
Astronauts Selected for China's Crewed Moon Missions: Chief Designer
China has selected a new batch of astronauts to prepare for its crewed lunar exploration programs, said Huang Weifen, chief designer of the manned space program's astronaut system.
The China Manned Space Agency (CMSA) announced Tuesday, June 11, 2024, that 10 candidates, including eight space pilots and two payload specialists, have been selected as the country's fourth batch of astronauts.
Of the two payload specialists, one is from the Hong Kong Special Administrative Region and the other is from the Macao Special Administrative Region, said the CMSA.
It added that this is first time it has selected payload specialists from the Hong Kong and Macao regions, a move that has garnered strong support and enthusiastic responses from these communities.
"The payload specialists from Hong Kong and Macao have undergone a rigorous selection process, from initial screenings to the secondary selection, with comprehensive medical examinations, physiological function tests, endurance tests for space environment adaptability, various psychological assessments, and evaluations of professional qualities. And we also conducted inspection visits and interviews for the final decision. They have met our criteria for selection," said Huang.
The CMSA announced in late May 2024 that China plans to realize manned lunar landing by 2030. Huang said the building of a astronaut team, from the selection of astronauts to the training programs, has been designed to support both the space station missions and future lunar missions.
"For the training of our existing second and third batches of astronauts, as well as the upcoming fourth batch, we have opened fundamental courses related to geology. We have also arranged for the astronauts relevant training, including field studies and geological surveys. When the development of training simulators for crewed lunar missions is completed, we will be able to unfold more substantive training tasks. Currently, we are making preliminary preparations and involving both our existing astronauts and the newly selected astronauts in engineering development work to allow them to study in the frontline of scientific research and to make the technical reserve for future missions," said Huang.
Video Credit: China Central Television (CCTV) Video News Agency
Duration: 2 minutes
Comet Pons-Brooks Develops Opposing Tails
Comet Pons-Brooks Develops Opposing Tails
Why does Comet Pons-Brooks now have tails pointing in opposite directions? The most spectacular tail is the blue-glowing ion tail that is visible flowing down the image. The ion tail is pushed directly out from the Sun by the solar wind. On the upper right is the glowing central coma of Comet 12P/Pons–Brooks. Fanning out from the coma, mostly to the left, is the comet's dust tail. Pushed out and slowed down by the pressure of sunlight, the dust tail tends to trail the comet along its orbit. It can appear opposite to the ion tail at certain angles.
The distant, bright star Alpha Leporis is seen at the bottom of this featured image captured last week from Namibia. On June 2, 2024, the comet passed its closest to the Earth and is now best visible from southern skies as it dims and glides back to the outer Solar System.
Image Credit & Copyright: Rolando Ligustri & Lukas Demetz
Rolando's Instagram Page:
https://www.instagram.com/rolandoligustri/
Release Date: June 6, 2024
#NASA #Space #Astronomy #Science #Sun #Earth #Comets #Comet #Comet12PPonsBrooks #SolarSystem #Star #AlphaLeporis #Astrophotography #RolandoLigustri #LukasDemetz #Astrophotographers #CitizenScience #Namibia #Africa #STEM #Education #APoD
Monday, June 10, 2024
Virgin Galactic #07 Spaceflight Recap: Final VSS Unity Mission
Virgin Galactic #07 Spaceflight Recap: Final VSS Unity Mission
Virgin Galactic’s VSS Unity spaceplane conducted its final commercial mission June 8, 2024, taking a Turkish researcher and three private astronauts on a suborbital spaceflight. VSS Unity, attached to its VMS Eve mothership aircraft, took off from Spaceport America in southern New Mexico at 10:31 a.m. Eastern. Unity released from Eve at 11:26 a.m. Eastern, flying its typical suborbital trajectory to an altitude of 87.5 kilometers before gliding to a landing back at the spaceport at 11:41 a.m. Eastern.
Galactic 07 featured a Turkish research astronaut, Tuva Atasever. His flight was arranged through Axiom Space, which flew another Turkish astronaut, Alper Gezeravcı, on the Ax-3 private astronaut mission to the International Space Station in January. Atasever was the backup for that mission.
Atasever planned to conduct seven experiments during the suborbital flight. “The experimental side of the flight was a huge success,” he said at a press conference after the flight. Those experiments included sensors to monitor brain activity, radiation dosimeters and insulin pens designed to operate in microgravity. The brain activity experiment, he noted, included tests to try and capture any changes in brain activity linked to the perspective-altering “Overview Effect” caused by seeing the Earth from space.
He said that testing of the insulin pens, an experiment developed by Axiom Space, during tests in the week leading up to the flight revealed they were not working as expected. “We iterated, we changed a couple of things, and this time around worked perfectly in microgravity.”
The vehicle also carried a rack with automated payloads from Purdue University to study propellant slosh in microgravity and from the University of California Berkeley to test 3D printing. Those payloads were flown through NASA’s Flight Opportunities program.
The other three customers were private astronauts, whose identities were disclosed by Virgin Galactic only after the vehicle landed. They were:
Andy Sadhwani, a principal propulsion engineer at SpaceX who previously did research at NASA and Stanford University;
Irving Pergament, a New York real estate developer and private pilot; and
Giorgio Manenti, an Italian investment manager living in London.
Unity was commanded by Nicola Pecile, making his fourth flight, with Jameel Janjua, on his first spaceflight, as pilot.
This was the seventh commercial flight for VSS Unity and the 12th flight overall. It will also be the last for VSS Unity, the second SpaceShipTwo vehicle built for Virgin Galactic, as the company shifts its focus to completing work on the new Delta series of vehicles.
Learn more at: https://www.virgingalactic.com
Video Credit: Virgin Galactic
Caption Credit: SpaceNews/Jeff Foust
Duration: 2 minutes, 21 seconds
Release Date: Jan. 28, 2024
#NASA #Space #Earth #CommercialSpaceflight #VirginGalactic #SpaceShipTwoVehicle #Galactic07 #VSSUnity #SuborbitalFlight #Astronauts #TuvaAtasever #Türkiye #AndySadhwani #IrvingPergament #GiorgioManenti #HumanSpaceflight #SpaceportAmerica #SpaceTourism #NewMexico #UnitedStates #STEM #Education #HD #Video
NASA’s Boeing Starliner Crew Flight Test: ULA Atlas V Launch Rocket Camera
NASA’s Boeing Starliner Crew Flight Test: ULA Atlas V Launch Rocket Camera
https://www.nasa.gov/commercialcrew
ULA Atlas V Rocket info:
https://www.ulalaunch.com/rockets/atlas-v
Video Credit: United Launch Alliance (ULA)
Duration: 6 minutes
Release Date: June 10, 2024
#NASA #Space #Earth #ISS #Boeing #Starliner #CST100 #AtlasVRocket #RocketCam #CommercialCrewProgram #CFT #Astronauts #SuniWilliams #BarryWilmore #HumanSpaceflight #SpaceTechnology #Engineering #LaunchAmerica #NASAKennedy #ULA #SLC41 #CapeCanaveral #Florida #UnitedStates #STEM #Education #HD #Video
James Webb Space Telescope Finds 10 times More Supernovae in Early Universe
James Webb Space Telescope Finds 10 times More Supernovae in Early Universe
"Webb is a supernova discovery machine," said Christa DeCoursey, a third-year graduate student at the Steward Observatory and the University of Arizona in Tucson. “The sheer number of detections plus the great distances to these supernovae are the two most exciting outcomes from our survey.”
Previously, researchers used NASA’s Hubble Space Telescope to view supernovae from when the universe was in the "young adult" stage. With JADES, scientists are seeing supernovae when the universe was in its “teens” or “pre-teens.” In the future, they hope to look back to the “toddler” or “infant” phase of the universe.
To discover the supernovae, the team compared multiple images taken up to one year apart and looked for sources that disappeared or appeared in those images. These objects that vary in observed brightness over time are called transients, and supernovae are a type of transient. In all, the JADES Transient Survey Sample team uncovered about 80 supernovae in a patch of sky only about the thickness of a grain of rice held at arm’s length.
“This is really our first sample of what the high-redshift universe looks like for transient science,” said teammate Justin Pierel, a NASA Einstein Fellow at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “We are trying to identify whether distant supernovae are fundamentally different from or very much like what we see in the nearby universe.”
Pierel and other STScI researchers provided expert analysis to determine what transients were actually supernovae and which were not, because often they looked very similar.
The team identified a number of high-redshift supernovae, including the farthest one ever spectroscopically confirmed, at a redshift of 3.6. Its progenitor star exploded when the universe was only 1.8 billion years old. It is a so-called core-collapse supernova, an explosion of a massive star.
Uncovering Distant Type Ia Supernovae
Of particular interest to astrophysicists are Type Ia supernovae. These exploding stars are so predictably bright that they are used to measure far-off cosmic distances and help scientists to calculate the universe's expansion rate. The team identified at least one Type Ia supernova at a redshift of 2.9. The light from this explosion began traveling to us 11.5 billion years ago when the universe was just 2.3 billion years old. The previous distance record for a spectroscopically confirmed Type Ia supernova was a redshift of 1.95, when the universe was 3.4 billion years old.
Scientists are eager to analyze Type Ia supernovae at high redshifts to see if they all have the same intrinsic brightness, regardless of distance. This is critically important, because if their brightness varies with redshift, they would not be reliable markers for measuring the expansion rate of the universe.
Pierel analyzed this Type Ia supernova found at redshift 2.9 to determine if its intrinsic brightness was different than expected. While this is just the first such object, the results indicate no evidence that Type Ia brightness changes with redshift. More data is needed, but for now, Type Ia supernova-based theories about the universe’s expansion rate and its ultimate fate remain intact. Pierel also presented his findings at the 244th meeting of the American Astronomical Society.
Looking Toward the Future
The early universe was a very different place with extreme environments. Scientists expect to see ancient supernovae that come from stars that contain far fewer heavy chemical elements than stars like our Sun. Comparing these supernovae with those in the local universe will help astrophysicists understand star formation and supernova explosion mechanisms at these early times.
“We’re essentially opening a new window on the transient universe,” said STScI Fellow Matthew Siebert, who is leading the spectroscopic analysis of the JADES supernovae. “Historically, whenever we've done that, we've found extremely exciting things—things that we didn't expect.”
“Because Webb is so sensitive, it's finding supernovae and other transients almost everywhere it’s pointed,” said JADES team member Eiichi Egami, a research professor at the University of Arizona in Tucson. “This is the first significant step toward more extensive surveys of supernovae with Webb.”
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, European Space Agency (ESA) and Canadian Space Agency (CSA).
Image Credit: NASA, European Space Agency (ESA), Canadian Space Agency (CSA), Space Telescope Science Institute (STScI), JADES Collaboration
Release Date: June 10, 2024
#NASA #Astronomy #Space #Science #Stars #Galaxies #Supernovae #Cosmos #EarlyUniverse #Universe #JamesWebb #SpaceTelescope #JWST #Infrared #UnfoldTheUniverse #JADESCollaboration #ESA #CSA #GSFC #STSc #UnitedStates #STEM #Education
Planet Mars Auroras during Epic May 2024 Solar Storm | NASA MAVEN Mission
Planet Mars Auroras during Epic May 2024 Solar Storm | NASA MAVEN Mission
The purple color in this video shows auroras on Mars’ nightside as detected by the ultraviolet instrument aboard NASA’s MAVEN orbiter between May 14 and 20, 2024. The brighter the purple, the more auroras that were present.
NASA's Mars Curiosity Rover Records Major May 2024 Solar Storm | NASA/JPL
NASA's Mars Curiosity Rover Records Major May 2024 Solar Storm | NASA/JPL
In addition to producing auroras, a recent extreme storm provided more detail on how much radiation future astronauts could encounter on the Red Planet.
Mars scientists have been anticipating epic solar storms ever since the Sun entered a period of peak activity earlier this year called solar maximum. Over the past month, NASA’s Mars rovers and orbiters have provided researchers with front-row seats to a series of solar flares and coronal mass ejections that have reached Mars—even causing Martian auroras at times.
This science bonanza has offered an unprecedented opportunity to study how such events unfold in deep space, as well as how much radiation exposure the first astronauts on Mars could encounter.
The biggest event occurred on May 20, 2024, with a solar flare later estimated to be an X12—X-class solar flares are the strongest of several types—based on data from the Solar Orbiter spacecraft, a joint mission between the European Space Agency (ESA) and NASA. The flare sent out X-rays and gamma rays toward the Red Planet, while a subsequent coronal mass ejection launched charged particles. Moving at the speed of light, the X-rays and gamma rays from the flare arrived first, while the charged particles trailed slightly behind, reaching Mars in just tens of minutes.
The unfolding space weather was closely tracked by analysts at the Moon to Mars Space Weather Analysis Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. It flagged the possibility of incoming charged particles following the coronal mass ejection.
If astronauts had been standing next to NASA’s Curiosity Mars rover at the time, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays. While not deadly, it was the biggest surge measured by Curiosity’s Radiation Assessment Detector, or RAD, since the rover landed 12 years ago.
RAD’s data will help scientists plan for the highest level of radiation exposure that might be encountered by astronauts. They would need to use the Martian landscape for protection.
“Cliffsides or lava tubes would provide additional shielding for an astronaut from such an event. In Mars orbit or deep space, the dose rate would be significantly more,” said RAD’s principal investigator, Don Hassler of Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. “I wouldn’t be surprised if this active region on the Sun continues to erupt, meaning even more solar storms at both Earth and Mars over the coming weeks.”
During the May 20 event, so much energy from the storm struck the surface that black-and-white images from Curiosity’s navigation cameras danced with “snow”—white streaks and specks caused by charged particles hitting the cameras.
NASA’s Jet Propulsion Laboratory in Southern California leads the Curiosity mission.
For more about Curiosity, visit:
Image Credit: NASA/JPL-Caltech
Release Date: June 10, 2024
#NASA #Space #Astronomy #Science #Star #Sun #SolarMax #Planet #Mars #Atmosphere #Ultraviolet #UV #Radiation #CuriosityRover #MSL #Astronauts #MAVENMission #MAVENSpacecraft #SolarSystem #SpaceExploration #GSFC #LASP #CUBoulder #UnitedStates #STEM #Education #GIF #Animation
Fly over the Gum 3 Nebula in Canis Major | European Southern Observatory
Fly over the Gum 3 Nebula in Canis Major | European Southern Observatory
This video gives us a closeup look at the Gum 3 nebula, a stellar nursery located about 3,600 light-years away, between the Monoceros and Canis Major constellations. The image was taken with the VLT Survey Telescope (VST), hosted at the European Southern Observatory’s Paranal Observatory in Chile.
Video Credit: ESO/VPHAS+ team
Ack.: CASU
Duration: 1 minute
Release Date: June 10, 2024
#NASA #ESO #Space #Astronomy #Science #Nebulae #Nebula #Cederblad90 #Gum3 #CanisMajor #Monoceros #Constellations #MilkyWayGalaxy #Cosmos #Universe #VLTSurveyTelescope #OmegaCAM #ParanalObservatory #Chile #SouthAmerica #Europe #STEM #Education #HD #Video
Gum 3 Nebula in Canis Major | European Southern Observatory
Gum 3 Nebula in Canis Major | European Southern Observatory
Gum 3 is an interstellar cloud of gas and dust located about 3,600 light-years away between the Monoceros and Canis Major constellations. It is named after Colin Stanley Gum, an Australian astronomer who catalogued 84 nebulae in the southern sky.
When the intense ultraviolet radiation from nearby young stars hits hydrogen atoms in the cloud, they emit visible light at very specific colors. We see these as shades of red and pink in the image. At the same time, tiny particles of dust within the cloud reflect starlight, especially blue colors, similar to what makes the sky look blue here on Earth. This play of colors makes nebulae like this spectacular to look at.
This image shows not only color, but also the lack of it. Look closely at the area just right of the brightest part of the cloud—right of the pink “Koi-smic fish”. Does anything look odd to you? It is not that there really are fewer stars in this dark area; instead, there is a big clump of dust that blocks part of the visible light, hiding the stars from VST and us.
Image Description: Most of the image is taken up by a cloud-like structure in shades of red and hot pink. It is hazy and wispy with areas, especially in the bottom half, brighter than others, and it stretches from the bottom left corner to the top right corner of the frame. Bright white stars shine through gaps in the structure; the one on the top right end is the largest, with red and blue-green rays coming out of it. Surrounding the cloud are thousands of stars of varying sizes and colors over a dark background.
Credit: ESO/VPHAS+ team.
Ack.: CASU
Release Date: June 10, 2024
Globular Cluster NGC 2005: An Ancient Galactic Witness | Hubble
Globular Cluster NGC 2005: An Ancient Galactic Witness | Hubble
Current theories of galaxy evolution predict that galaxies merge with one another. It is widely thought that the relatively large galaxies that we observe in the modern Universe were formed via the merging of smaller galaxies. If this is correct, then astronomers would expect to see evidence that the most ancient stars in nearby galaxies originated in unique galactic environments. As globular clusters are known to contain ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.
NGC 2005 is such a globular cluster, and its very existence has provided evidence to support the theory of galaxy evolution via mergers. Indeed, the stars in NGC 2005 have a chemical composition that is distinct from the stars in the LMC around it. This suggests that the LMC underwent a merger with another galaxy during its history. Although the other galaxy has long-since merged and otherwise dispersed, NGC 2005 remains behind as an ancient witness to the long-past merger.
Image Description: A globular cluster, appearing as a highly dense and numerous collection of shining stars. A number appear a bit larger and brighter than others with the brightest having cross-shaped spikes around them. They are scattered mostly uniformly, but in the center they crowd together more and more densely, and merge into a strong glow at the cluster’s core.
Credit: European Space Agency/Hubble & NASA, F. Niederhofer, L. Girardi
Release Date: June 10, 2024
Sunday, June 09, 2024
China Chang'e-6 Far Side Moon Mission Offers Scientists Information Treasure Chest
China Chang'e-6 Far Side Moon Mission Offers Scientists Information Treasure Chest
After its May 3, 2024 launch, James Head, distinguished American professor emeritus of geological sciences at Brown University in Providence, Rhode Island, spoke about the scientific importance for humanity of China's Chang'e-6 Mission to the Moon's far side south polar region. The Chang'e-6 mission features scientific payloads from France, Italy, Sweden, and Pakistan.
Professor Brown has trained astronaut crews in geology and surface exploration and participated in the selection of landing sites for NASA's Apollo Moon program. Professor Brown studies the roles of volcanism in planetary crusts as well as the geological evolution of Mars, and has served as the investigator on many major international planetary science missions. He has published 25 chapters in books on planetary geology and over 300 refereed articles in scientific journals, and has supervised nearly 40 PhD students.
The Chang'e-6 lunar lander-ascender combination touched down at the designated landing area in the South Pole-Aitken (SPA) Basin on Sunday, June 2, 2024.
The SPA basin (43°±2° south latitude, 154°±4° west longitude) is a large impact crater on the far side of the Moon. At roughly 2,500 km (1,600 mi) in diameter and between 6.2 and 8.2 km (3.9–5.1 mi) deep, it is the largest, oldest, and deepest basin recognized on the Moon.
The ascender of China's Chang'e-6 probe successfully lifted off from the lunar surface on Tuesday morning, June 4, 2024, carrying samples collected from the Moon's far side south polar region—an unprecedented feat in human lunar exploration history.
The probe's returner, carrying the samples, is expected to make its planned touchdown in the Siziwang Banner in north China's Inner Mongolia Autonomous Region around June 25, 2024.
Duration: 4 minutes
Release Date: May 2, 2024
NASA Artemis II Moon Rocket Core Stage Nearing Completion | NASA Michoud
NASA Artemis II Moon Rocket Core Stage Nearing Completion | NASA Michoud
The core stage is the backbone of the Space Launch System (SLS) rocket that will help power NASA’s Artemis II mission to send a crew of four astronauts around the Moon in 2025. Here, the core stage is currently behind scaffolding to allow work to continue at NASA’s Michoud Assembly Facility in New Orleans.
NASA will roll the fully assembled core stage for the agency’s Space Launch System (SLS) rocket that will launch the first crewed Artemis mission out of NASA’s Michoud Assembly Facility in New Orleans in mid-July. Following hardware acceptance reviews and final checkouts, the stage will be readied for delivery via the agency’s Pegasus barge to NASA’s Kennedy Space Center in Florida for Artemis II launch preparations. The stage’s two massive propellant tanks hold a collective 733,000 gallons of liquid propellant to power the four RS-25 engines at its base.
The rocket stage with its four RS-25 engines will provide more than 2 million pounds of thrust to send astronauts aboard the Orion spacecraft for the Artemis II mission. Once at Kennedy, teams with NASA’s Exploration Ground Systems Program will finish outfitting the stage and prepare it for stacking and launch. Artemis II is currently scheduled for launch in September 2025.
Building, assembling, and transporting the core stage is a collaborative process for NASA, Boeing, the core stage lead contractor, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3 Harris Technologies company.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under the agency’s Artemis campaign. The SLS rocket is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. The SLS rocket is the only rocket designed to send Orion, astronauts, and supplies to the Moon in a single launch.
Learn more about NASA’s Artemis campaign:
Image Credit: NASA/ Eric Bordelon
Release Date: June 7, 2024
How to Protect Telescopes from Earthquakes | European Southern Observatory
How to Protect Telescopes from Earthquakes | European Southern Observatory
Chile's Atacama Desert is among the darkest skies on Earth, but it is also a seismically active area. How does the European Southern Observatory protect its large and sophisticated telescopes against earthquakes?
Follow European Southern Observatory astronomer Suzanna Randall in this episode of Chasing Starlight, where she travels to Chile to show us the clever anti-seismic technology that keeps our telescopes safe.
00:00 Introduction
01:01 What causes earthquakes?
02:26 The Very Large Telescope
04:43 The Extremely Large Telescope
Credit: European Southern Observatory (ESO)
Directed by: Luis Calçada, Martin Kornmesser, Juan Carlos Muñoz Mateos
Hosted by: Suzanna Randall
Written by: Thomas Howarth and Pamela Freeman
Editing: Martin Kornmesser
Videography: Angelos Tsaousis, Rodrigo Soruco
Footage and Photos: ESO, L. Calçada, C. Malin/ Vectorial/ J. F. Salgado/ Chepox/ G. Huedepohl /ESO/Alessio Dradi (Cimolai), U.S. Navy, NASA, ESO/ACe Consortium
Animations & Infographics: Luis Calçada, Martin Kornmesser
Scientific Consultant: Paola Amico
Filming Locations: ESO Supernova, Cerro Armazones and Paranal in northern Chile
Duration: 7 minutes