Monday, July 01, 2024

Flyover of Hurricane Beryl in Caribbean: July 1, 2024 | International Space Station

Flyover of Hurricane Beryl in Caribbean: July 1, 2024 | International Space Station

The International Space Station flew 260 miles over Hurricane Beryl at approximately 9 a.m. EDT Monday, July 1, 2024. External cameras on the orbiting laboratory captured views of the storm as it traveled across the Caribbean near the Windward Islands as a Category 4 hurricane with winds around 130 miles per hour.

Visit the NOAA's National Hurricane Center for updates:

https://www.nhc.noaa.gov

National Oceanic and Atmospheric Administration (NOAA)

Expedition 71 Updates:

https://blogs.nasa.gov/spacestation/

Expedition 71 Crew
Station Commander: Oleg Kononenko (Russia)
Roscosmos (Russia): Nikolai Chub, Alexander Grebenkin (Russia)
NASA: Tracy Dyson, Matthew Dominick, Mike Barrett, Jeanette Epps
NASA’s Boeing Crew Flight Test astronauts Suni Williams and Butch Wilmore

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation

Science, Technology, Engineering, Math (STEM)


Video Credit: NASA's Johnson Space Center (JSC)

Duration: 12 minutes

Release Date: July 1, 2024


#NASA #Space #Science #Earth #Weather #Hurricanes #HurricaneBeryl #CaribbeanSea #ISS  #SpaceLaboratory #Astronauts #UnitedStates #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition71 #STEM #Education #HD #Video

Pan of Spiral Galaxy NGC 4951 in Virgo | Hubble

Pan of Spiral Galaxy NGC 4951 in Virgo | Hubble


This picture from the NASA/European Space Agency Hubble Space Telescope depicts the galaxy NGC 4951, a spiral galaxy that is located 49 million light-years from Earth in the constellation Virgo. The data used to make this image were captured by Hubble as part of a program to examine how matter and energy travel in nearby galaxies. Galaxies continuously undergo a cycle of star formation as the gas in a galaxy forms molecular clouds. This can collapse to create new stars, dispersing the clouds they formed from with powerful radiation or stellar winds in a process called feedback. The remaining gas is left to create new clouds elsewhere. This cycle of moving matter and energy determines how fast a galaxy forms stars and how quickly it burns through its supplies of gas—that is, how it evolves over the course of its life. Understanding this evolution depends on the nebulae, stars and star clusters in the galaxy—when they formed and their past behavior. Hubble has always excelled at measuring populations of stars, and the task of tracking gas and star formation in galaxies including NGC 4951 is no exception.

NGC 4951 is also a Seyfert galaxy, a type of galaxy that has a very bright and energetic nucleus called an active galactic nucleus (AGN). This image demonstrates well how energetic the galaxy is, and how dynamic galactic activity transports matter and energy throughout it. It is a shining core surrounded by swirling arms, glowing pink star-forming regions, and thick dust.

Image Description: A spiral galaxy, tilted diagonally. It has thick, cloudy spiral arms wrapping around the core. They are filled with pink patches marking new star formation, young blue stars, and dark wisps of dust that block light. The galaxy glows brightly from its core. It is on a dark background, with a few distant galaxies and unrelated stars around it.


Video Credit: ESA/Hubble & NASA, D. Thilker, M. Zamani (ESA/Hubble), N. Bartmann (ESA/Hubble)

Duration: 30 seconds

Release Date: July 1, 2024


#NASA #ESA #Astronomy #Space #Science #Hubble #Galaxies #Galaxy #NGC4951 #SpiralGalaxy #SeyfertGalaxy #AGN #Virgo #Constellation #Cosmos #Universe #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education #HD #Video

Spiral Galaxy NGC 4951 in Virgo: A Maelstrom of Matter & Energy | Hubble

Spiral Galaxy NGC 4951 in Virgo: A Maelstrom of Matter & Energy | Hubble


This picture from the NASA/European Space Agency Hubble Space Telescope depicts the galaxy NGC 4951, a spiral galaxy that is located 49 million light-years from Earth in the constellation Virgo. The data used to make this image were captured by Hubble as part of a program to examine how matter and energy travel in nearby galaxies. Galaxies continuously undergo a cycle of star formation as the gas in a galaxy forms molecular clouds. This can collapse to create new stars, dispersing the clouds they formed from with powerful radiation or stellar winds in a process called feedback. The remaining gas is left to create new clouds elsewhere. This cycle of moving matter and energy determines how fast a galaxy forms stars and how quickly it burns through its supplies of gas—that is, how it evolves over the course of its life. Understanding this evolution depends on the nebulae, stars and star clusters in the galaxy—when they formed and their past behavior. Hubble has always excelled at measuring populations of stars, and the task of tracking gas and star formation in galaxies including NGC 4951 is no exception.

NGC 4951 is also a Seyfert galaxy, a type of galaxy that has a very bright and energetic nucleus called an active galactic nucleus (AGN). This image demonstrates well how energetic the galaxy is, and how dynamic galactic activity transports matter and energy throughout it. It is a shining core surrounded by swirling arms, glowing pink star-forming regions, and thick dust.

Image Description: A spiral galaxy, tilted diagonally. It has thick, cloudy spiral arms wrapping around the core. They are filled with pink patches marking new star formation, young blue stars, and dark wisps of dust that block light. The galaxy glows brightly from its core. It is on a dark background, with a few distant galaxies and unrelated stars around it.


Image Credit: ESA/Hubble & NASA, D. Thilker, M. Zamani (ESA/Hubble)

Release Date: July 1, 2024


#NASA #ESA #Astronomy #Space #Science #Hubble #Galaxies #Galaxy #NGC4951 #SpiralGalaxy #SeyfertGalaxy #AGN #Virgo #Constellation #Cosmos #Universe #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education

Ten Impact Craters Seen from Space | European Space Agency

Ten Impact Craters Seen from Space | European Space Agency

 

Have you ever wondered what an impact crater looks like from space? Today, we’re counting down examples of our favorite impact craters here on Earth—captured by Earth-observing satellites.

Craters are inevitably part of being a rocky planet. They occur on every planetary body in our solar system—no matter the size. By studying impact craters and the meteorites that cause them, we can learn more about the processes and geology that shape our entire solar system.

Chapters:

00:00 - 01:03 Intro

01:04 - 01:37 Nördlinger Ries

01:38 - 02:12 Ouarkziz Crater

02:13 - 03:05 Tenoumer Crater

03:06 - 03:32 Gosses Bluff

03:33 - 04:00 Siljan Ring

04:01 - 04:31 Roter Kamm

04:32 - 4:59 Manicouagan Crater

05:00 - 5:32 Shoemaker Crater

05:33 - 06:06 Aorounga Crater

06:07 - 6:49 Meteor Crater

06:50 - 07:21 Outro


Video Credit: European Space Agency (ESA)

Duration: 7 minutes, 20 seconds

Release Date: July 1, 2024


#NASA #ESA #Astronomy #Space #Science #Planet #Earth #Geology #ImpactCraters #Meteors #Asteroids #AsteroidBelt #SolarSystem #Europe #PlanetaryDefense #STEM #Education #HD #Video

Sunday, June 30, 2024

See Jupiter’s Moons Form a Triangle | BBC Star Diary: July 1-7, 2024

See Jupiter’s Moons Form a Triangle | BBC Star Diary: July 1-7, 2024

This week, Jupiter’s moons will arrange themselves into a triangle to the left of the gas giant. Find out how you can see it and other celestial sights in this week’s stargazing guide podcast, Star Diary from the makers of BBC Sky at Night Magazine, July 1-7, 2024.

How to see the International Space Station tonight: https://www.skyatnightmagazine.com/advice/skills/how-see-international-space-station-iss-night-sky


Video Credit:  BBC Sky at Night Magazine

Duration: 23 minutes

Release Date: June 30, 2024

#NASA #Space #Astronomy #Science #Planets #Earth #Moon #Jupiter #Moons #SolarSystem #Comets #Stars #Constellations #MilkyWayGalaxy #Galaxies #Universe #Skywatching #BBC #UK #Britain #Europe #UnitedStates #Canada #NorthernHemisphere #STEM #Education #Podcast #HD #Video

Tonight's Sky: July 2024 (Northern Hemisphere)

Tonight's Sky: July 2024 (Northern Hemisphere)


In July 2024, find the Scorpius constellation to identify the reddish supergiant Antares, which will lead you to discover a trio of globular star clusters. Keep watching for space-based views of these densely packed, spherical collections of ancient stars, as well as three nebulas: the Swan Nebula, the Lagoon Nebula, and the Trifid Nebula.

About this Series

“Tonight’s Sky” is a monthly video of constellations you can observe in the night sky. The series is produced by the Space Telescope Science Institute, home of science operations for the Hubble Space Telescope, in partnership with NASA’s Universe of Learning.

Video Credit: Space Telescope Science Institute (STScI)

Release Date: June 25, 2024


#NASA #Space #Astronomy #Science #Earth #Planets #SolarSystem #Stars #Antares #Nebulae #SwanNebula #LagoonNebula #TrifidNebula #Constellations #MilkyWayGalaxy #Galaxies #Skywatching #STScI #JPL #Caltech #SSU #UnitedStates #Canada #Mexico #NorthernHemisphere #STEM #Education #HD #Video

Nebulae NGC 1999 & L1641N in Orion: Star Birth Jets | WIYN Observatory

Nebulae NGC 1999 & L1641N in Orion: Star Birth Jets | WIYN Observatory


Astronomers captured this spectacular panorama of star formation with the National Science Foundation's 0.9-meter telescope on Kitt Peak. Located in the constellation of Orion (the Hunter), the area in this image is located about two degrees south of the Orion Nebula, where a surviving portion of one of Orion's giant molecular clouds (known as "Orion A") is continuing to spawn new stars. Powerful jets of outflowing gas are often the first visible signs of the birth of young stars. These jets punch holes through the opaque clouds where the star is formed. Through such holes the light of the new-born stars can escape to produce what are known as reflection nebulae. Several such nebulae are seen in this image. The bright object below and to the left of center is the reflection nebula NGC 1999, which contains the young star V380 Orionis. A small, triangle shaped patch of dusty material is seen in silhouette against the reflection nebula. NGC 1999 lies at the center of a network of nebulous filaments that billow out and away like the spokes of a bicycle wheel. These features may trace a wide-angle wind emerging from NGC 1999. 

Near the upper half of the image, bright young stars in a forming cluster named L1641N light up another reflection nebula. It contains several dense clumps of opaque material. Infrared images have identified over 50 forming stars in this region. More than six jets and outflows are erupting from this region. Outflowing jets from young stars also power luminous shock waves known as Herbig-Haro (HH) objects. They can move through the surrounding gas at speeds of up to hundreds of kilometers per second (over 100,000 miles an hour). As these shock waves ram their surroundings, they heat up bow-shaped nebulae of glowing plasma. This image shows dozens of such objects. 

The region below the NGC1999 reflection nebula contains a cluster of deeply embedded young stars that power oppositely directed bow shocks. These objects were first recognized by Guillermo Haro and George Herbig around 1950 and today they are known as HH 1 and HH 2. Recent observations indicate that the cone shape located near the right edge of the image (known as HH 401) may be a giant bow shock powered by the source of the HH 1 & 2 outflow. If so, this outflow is more than 10 light-years long! The arc of light looking like a waterfall (located above and to the left of HH 401) is the enigmatic object HH 222. Unlike most other HH objects, it is a source of polarized, non-thermal radio waves. The nature of this feature remains largely unknown. 

Between HH 401 and HH 222 runs a long chain of Herbig-Haro objects associated with the object HH 34. HH 34 itself is the bright and compact bow shock located near the bottom of HH 222. Just above HH 34, a compact jet can be seen to emerge from the source star. This jet and its first bow shock (HH 34) mark the inner portion of a chain of shocks that trace a graceful S-shaped curve from the upper right hand corner of the image down towards HH 1 & 2. The north end of the flow is just below the top of the image (objects HH 33 & 40); the south end of the flow terminates in a group of small bow shocks known as HH 86 & 87. They reside in the dark region between HH 401 and NGC 1999. Many other smaller nebulous patches in this image mark small reflection nebulae, Herbig-Haro objects, and stellar jets. The rich detail in this image reveals one of the most fascinating areas of the night sky.

The Kitt Peak National Observatory is located on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O'odham Nation. With over twenty optical and two radio telescopes, it is one of the largest gatherings of astronomical instruments in the northern hemisphere.

The Wisconsin-Indiana-Yale-NOIRLab (WIYN) Observatory is situated atop Kitt Peak National Observatory, a partnership consisting of University of California Irvine, Purdue University, the National Science Foundation’s NOIRLab, and NASA.

Learn more about the WIYN Observatory:

Credit: T.A.Rector, B.Wolpa and G.Jacoby (NOIRLab/NSF/AURA) and Hubble Heritage Team (STScI/AURA/NASA)

Release Date: June 30, 2020


#NASA #Astronomy #Space #Science #Stars #Nebulae #NGC1999 #L1641N #ReflectionNebulae #StellarNurseries #Jets #HerbigHaroObjects #Orion #Constellation #Cosmos #Universe #WIYNObservatory #KPNO #KittPeak #Arizona #NOIRLab #AURA #NSF #UnitedStates #STEM #Education

Saturn's Rings | NASA Cassini Mission

Saturn's Rings | NASA Cassini Mission


NASA's Cassini spacecraft captured extraordinary ring-moon interactions, observed the lowest ring-temperature ever recorded at Saturn, discovered that the moon Enceladus is the source for Saturn’s E ring, and viewed the rings at equinox when sunlight strikes the rings edge-on, revealing never-before-seen ring features and details.

The Cassini spacecraft arrived in the Saturn system in 2004 and ended its mission in 2017 by deliberately plunging into Saturn's atmosphere. This method was chosen because it is necessary to ensure protection and prevent biological contamination to any of the moons of Saturn thought to offer potential habitability. 

The Cassini-Huygens mission was a cooperative project of NASA, European Space Agency (ESA) and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the mission for NASA's Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter. The Cassini radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.

Cassini Mission information:

https://solarsystem.nasa.gov/cassini


Image Credit: NASA/JPL-Caltech/SSI/CICLOPS

Processing: Kevin M. Gill

Image Date: Dec. 17, 2006

Release Date: June 29, 2024


#NASA #Astronomy #Space #Science #Planet #Saturn #Rings #SolarSystem #CassiniMission #CassiniSpacecraft  #HuygensProbe #JPL #Caltech #UnitedStates #ESA #Italy #Italia #ASI #Europe #STEM #Education

Planet Saturn & Titan Moon | NASA Cassini Mission

Planet Saturn & Titan Moon | NASA Cassini Mission

NASA's Cassini spacecraft arrived in the Saturn system in 2004 and ended its mission in 2017 by deliberately plunging into Saturn's atmosphere. This method was chosen because it is necessary to ensure protection and prevent biological contamination to any of the moons of Saturn thought to offer potential habitability. The Cassini Mission mapped more than 620,000 square miles (1.6 million square kilometers) of liquid lakes and seas on the surface of Saturn's largest moon Titan. This work was performed with its radar instrument that sent out radio waves and collected a return signal (or echo) that provided information about the terrain and the liquid bodies' depth and composition, along with two imaging systems that could penetrate the moon's thick atmospheric haze.

Titan is larger than the planet Mercury and is the second largest moon in our solar system. Titan is the only moon known to have a dense atmosphere, and the only object in space, other than Earth, where clear evidence of stable bodies of surface liquid has been found. Titan’s subsurface water could be a place to harbor life as we know it, while its surface lakes and seas of liquid hydrocarbons could conceivably harbor life that uses different chemistry than we are used to—that is, life as we do not yet know it. 

The Cassini-Huygens mission was a cooperative project of NASA, European Space Agency (ESA) and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the mission for NASA's Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.

Cassini Mission information:

Image Credit: NASA/JPL-Caltech/SSI/CICLOPS
Processing: Kevin M. Gill
Image Date: August 11, 2013
Release Date: June 29, 2024

#NASA #Astronomy #Space #Science #Planet #Saturn #Moon #Titan #Lakes #Hydrocarbons #Astrobiology #SolarSystem #CassiniMission #CassiniSpacecraft  #HuygensProbe #JPL #Caltech #UnitedStates #ESA #Italy #Italia #ASI #Europe #STEM #Education

NASA Planetary Defense: Near-Earth Asteroids Discovered to Date for June 2024

NASA Planetary Defense: Near-Earth Asteroids Discovered to Date for June 2024

What do we know about the asteroids and comets in Earth's neighborhood? Planetary defense includes finding, tracking, and characterizing these near-Earth objects. It is part of NASA's mission. Here is what we have found so far . . .

Learn more about Planetary Defense at NASA: https://www.nasa.gov/planetarydefense


Video Credit: NASA 360

Duration: 1 minute, 13 seconds

Release Date: June 30, 2024


#NASA #Space #Earth #Planet #PlanetaryDefense #June2024 #Asteroids #AsteroidBelt #Comets #NEO #NEA #SolarSystem #Science #Technology #DARTMission #JHUAPL #JPL #Caltech #UnitedStates #STEM #Education #HD #Video

Saturday, June 29, 2024

Comet 13P/Olbers Returns to Inner Solar System: Last Seen in Year 1956

Comet 13P/Olbers Returns to Inner Solar System: Last Seen in Year 1956

  

Comet 13P/Olbers is returning to the inner Solar System after 68 years. This periodic, Halley-type comet will reach its next perihelion or closest approach to the Sun on June 30, 2024. It can be viewed with binoculars in the night sky of planet Earth's northern hemisphere. 

This sharp telescopic image of 13P is composed of stacked exposures made on the night of June 25. It easily reveals shifting details in the bright comet's torn and tattered ion tail buffeted by the wind from an active Sun, along with a broad, fanned-out dust tail and slightly greenish coma. The frame spans over two degrees across a background of faint stars toward the constellation Lynx.

13P/Olbers fits the classical definition of a Halley-type comet with a period between 20 and 200 years. This comet was last seen in 1956. German astronomer Heinrich Wilhelm Matthias Olbers discovered this comet on March 6, 1815.


Image Credit & Copyright: Dan Bartlett

Dan's website: https://www.astrobin.com/users/h2ologg/

Release Date: June 28, 2024


#NASA #Space #Astronomy #Science #Sun #Earth #Comets #Comet13POlbers #SolarSystem #Lynx #Constellation #Astrophotography #DanBartlett #Astrophotographer #CitizenScience #UnitedStates #STEM #Education #History #APoD

Stargazing with SpaceX Dragon | International Space Station

Stargazing with SpaceX Dragon | International Space Station

NASA Astronaut Matthew Dominick: "Peering out into the cosmos from Dragon perched on top of the ISS . . . Today on each orbit the sun sets about 15 minutes before the moon rises. Shot is taken just as the moon comes up illuminating the Dragon with a faint blue in front of a sea of stars."

Technical details: 1s, f1.4, ISO 5000, 28mm

Expedition 71 Updates: 

https://blogs.nasa.gov/spacestation/

Expedition 71 Crew
Station Commander: Oleg Kononenko (Russia)
Roscosmos (Russia): Nikolai Chub, Alexander Grebenkin (Russia)
NASA: Tracy Dyson, Matthew Dominick, Mike Barrett, Jeanette Epps
NASA’s Boeing Crew Flight Test astronauts Suni Williams and Butch Wilmore

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada. The ISS has been the most politically complex space exploration program ever undertaken.

Learn more about the important research being operated on Station:

https://www.nasa.gov/iss-science 

For more information about STEM on Station:

https://www.nasa.gov/stemonstation

Science, Technology, Engineering, Math (STEM)


Image Credit: NASA's Johnson Space Center (JSC)/Astronaut Matthew Dominick

Release Date: June 29, 2024


#NASA #Space #Astronomy #Science #Stars #MilkyWayGalaxy #Earth #ISS #SpaceXDragon #SpaceTechnology #SpaceLaboratory #Engineering #Astronauts #UnitedStates #Cosmonauts #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition71 #STEM #Education

Galaxy Messier 87: Wide-field View in The Virgo Cluster | Schmidt Telescope

Galaxy Messier 87: Wide-field View in The Virgo Cluster Schmidt Telescope

Image of the Virgo cluster of galaxies taken with the Palomar Observatory 48-inch Schmidt Telescope as part of the Digitized Sky Survey 2 (DSS2). The giant elliptical galaxy Messier 87 is seen in the center, while Messier 84 and 86 are the two bright galaxies forming part of the small group on the center right of the image. New observations obtained with European Southern Observatory’s Very Large Telescope (VLT) have shown that the halo of stars around Messier 87 has been truncated, possibly because of interaction with Messier 84. The observations also reveal that Messier 87 and 86 are moving towards each other.

The Digitized Sky Survey (DSS) is a digitized version of several photographic astronomical surveys of the night sky, produced by the Space Telescope Science Institute between 1983 and 2006.

Learn more about the Schmidt Telescope:

https://sites.astro.caltech.edu/palomar/about/telescopes/oschin.html


Credit: ESO/Digitized Sky Survey 2

Release Date: May 20, 2009


#NASA #Astronomy #Space #Science #Galaxies #Galaxy #M87 #Messier87 #EllipticalGalaxy #VirgoCluster #GalaxyClusters #Virgo #Constellation #Cosmos #Universe #SchmidtTelescope #PalomarObservatory #SanDiego #California #DSS2 #STScI #ESO #Europe #NOIRLab #AURA #NSF #UnitedStates #STEM #Education

The Halo of Galaxy Messier 87 in Virgo | Burrell Schmidt Telescope

The Halo of Galaxy Messier 87 in Virgo | Burrell Schmidt Telescope


The huge halo around giant elliptical galaxy Messier 87 appears on this very deep image. An excess of light in the top-right part of this halo, and the motion of planetary nebulae in the galaxy, are the last remaining signs of a medium-sized galaxy that recently collided with Messier 87. The image also reveals many other galaxies forming the Virgo Cluster, of which Messier 87 is the largest member. In particular, the two galaxies at the top right of the frame are nicknamed "the Eyes".

Note: The black circles visible are coverage gaps where we lacked image data.

The Case Western Reserve University’s Burrell Schmidt Telescope wide-field telescope, owned and operated by Case Astronomy, is located at Kitt Peak National Observatory. It is used for deep wide-field imaging and surveys and was installed on Kitt Peak in 1979.

Learn more about the Burrell Schmidt Telescope:

https://noirlab.edu/public/programs/kitt-peak-national-observatory/burrell-schmidt-telescope/


Credit: KPNO/NOIRLab/NSF/AURA/Chris Mihos (Case Western Reserve University)/ESO

Release Date: May 2, 2023


#NASA #Astronomy #Space #Science #Galaxies #Galaxy #M87 #Messier87 #EllipticalGalaxy #Virgo #Constellation #Cosmos #Universe #BurrellSchmidtTelescope #Optical #KPNO #NOIRLab #AURA #NSF #KittPeak #Arizona #UnitedStates #ESO #Europe #STEM #Education

The Whale Galaxy: NGC 4631 in Canes Venatici | Hubble

The Whale Galaxy: NGC 4631 in Canes Venatici | Hubble


The NASA/European Space Agency Hubble Space Telescope has peered deep into NGC 4631, better known as the Whale Galaxy. Here, a profusion of starbirth lights up the galactic center, revealing bands of dark material between us and the starburst. The galaxy’s activity tapers off  in its outer regions where there are fewer stars and less dust, but these are still punctuated by pockets of star formation.

The Whale Galaxy is about 30 million light-years away from us in the constellation of Canes Venatici (The Hunting Dogs) and is a spiral galaxy much like the Milky Way. From our vantage point, however, we see the Whale Galaxy edge-on, seeing its glowing center through dusty spiral arms. The galaxy's central bulge and asymmetric tapering disc have suggested the shape of a whale or a herring to past observers.

Many supernovae—the explosions of hot, blue, short-lived stars at least eight times the mass of the Sun—have gone off in the core of the Whale Galaxy. The stellar pyrotechnics have bathed the galaxy in hot gas, visible to X-ray telescopes like the European Space Agency’s XMM–Newton. Comparing the optical and near-infrared observations from Hubble with other telescopes sensitive to different wavelengths of light helps astronomers gather the full story behind celestial phenomena.

From such work, the triggers of the starburst in the Whale Galaxy and others can be elucidated. The gravitational "feeding" on intergalactic material, as well as clumping caused by the gravitational interactions with its galactic neighbors, creates the areas of greater density where stars start to coalesce. Just as blue whales, the biggest creatures on Earth, can gorge themselves on comparatively tiny bits of plankton, so the Whale Galaxy has become filled with the gas and dust that powers a high rate of star formation.


Credit: NASA & ESA

Release Date: Nov. 14, 2011


#NASA #ESA #Astronomy #Space #Science #Hubble #Galaxies #Galaxy #NGC4631 #SpiralGalaxy #CanesVenatici #Constellation #Cosmos #Universe #SpaceTelescope #GSFC #STScI #UnitedStates #Europe #STEM #Education

Friday, June 28, 2024

Thackeray's Globules: Nebula IC 2944 in Centaurus | Victor Blanco Telescope

Thackeray's Globules: Nebula IC 2944 in Centaurus | Victor Blanco Telescope

This image was obtained with the wide-field view of the Mosaic II camera on the 4-meter Victor Blanco telescope at Cerro Tololo Interamerican Observatory. An array of dark Bok globules, known as Thackeray's Globules, can be seen in silhouette against the emission nebula IC 2944 in the constellation Centaurus. These dense, opaque dust clouds are silhouetted against nearby bright stars in the busy star-forming region. The image was generated with observations in the B (blue), I (orange) and Hydrogen-Alpha (yellow) filters. In this image, north is to the right, and east is up. This is one of the last observations completed with the Mosaic II camera before it was decommissioned.

Distance: ~6,500 light years

Astronomer A.D. Thackeray first spied the globules in IC 2944 in 1950. Globules like these have been known since Dutch-American astronomer Bart Bok first drew attention to such objects in 1947.

However, astronomers still know very little about their origin and nature, except that they are generally associated with areas of star formation, called 'HII regions' due to the presence of hydrogen gas. IC 2944 is filled with gas and dust that is illuminated and heated by a loose cluster of massive stars. These stars are much hotter and much more massive than our Sun.

These thick clouds of dust, known as the Thackeray globules, are silhouetted against the glowing gas of the nebula. These globules are under fierce bombardment from the ultraviolet radiation from nearby hot young stars. They are being eroded away and also fragmenting, rather like lumps of butter dropped onto a hot frying pan. It is likely that Thackeray’s globules will be destroyed before they can collapse and form new stars. 

The 4-meter Víctor M. Blanco Telescope was commissioned in 1974. It is a near twin of the Mayall 4-meter telescope on Kitt Peak. In 1995 it was dedicated and named in honor of Puerto Rican astronomer Víctor Manuel Blanco. It is also part of the Dark Energy Survey (DES), a visible and near-infrared survey that aims to probe the dynamics of the expansion of the Universe.

Víctor M. Blanco Telescope:

https://noirlab.edu/science/programs/ctio/telescopes/victor-blanco-4m-telescope


Credit: T.A. Rector (University of Alaska Anchorage) and N.S. van der Bliek (NOIRLab/NSF/AURA)

Release Date: June 26, 2012


#NASA #Astronomy #Space #Science #Nebulae #Nebula #EmissionNebula #IC2944 #RunningChickenNebula #BokGlobules #ThackeraysGlobules #Centaurus #Constellation #MilkyWayGalaxy #Cosmos #Universe #VictorBlancoTelescope #KPNO #NOIRLab #NSF #AURA #KittPeak #Arizona #UnitedStates #Europe #STEM #Education